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ABSTRACT
Despite much web privacy research on sophisticated tracking tech-
niques (e.g., fingerprinting, cache collusion, bounce tracking), most
tracking on the web is still done by transmitting stored identifiers
across site boundaries. “Stateful” tracking is not a bug but a misfea-
ture of classical browser storage policies: per-site storage is shared
across all visits, from both first- and third-party (i.e., embedded in
other sites) context, enabling the most pervasive forms of online
tracking.

In response, some browser vendors have implemented alternate,
privacy-preserving storage policies, especially for third-party site
context. However, such changes risk breakingwebsites that presume
the traditional model of non-partitioned third-party storage. Such
breakage can itself harmwebprivacy: browsers that frustrate user ex-
pectations will be abandoned for more permissive, privacy-harming
browsers, cementing rather than disrupting the status quo.

Our work improves the state of web privacy by measuring the
privacy vs. compatibility trade-offs of representative third-party
storage policies, with the end-goal of enabling design of browsers
that are both compatible and privacy respecting. Our contributions
include web-scale measurements of page behaviors under multi-
ple third-party storage policies representative of those deployed in
several production browsers. We define metrics for measuring ag-
gregate effects on web privacy and compatibility, including a novel
system for programmatically estimating aggregatewebsite breakage
under different policies.We find thatmaking third-party storage par-
titioned by first-party, and lifetimes by site-session achieves the best
privacy and compatibility trade-off. We provide complete datasets
and implementations for our measurements and tools.

CCS CONCEPTS
• Security and privacy→ Privacy protections; • Information
systems→ Browsers;Webmining.
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1 INTRODUCTION
Web trackers use many techniques to track users and violate pri-
vacy on the web. Typical tracker practice combines stateful tracking
(i.e., storing and transmitting unique identifiers in the browser) and
stateless tracking, or fingerprinting (i.e., attempting to uniquely
identify a browser based on distinctive browser, operating system,
and hardware characteristics).

Thoughmuch recent privacy work has focused on stateless track-
ing (i.e., fingerprinting), there is cause to believe that the majority of
tracking is still done using traditional stateful methods. Supporting
evidence includes the adtech uproar over Google’s recent announce-
ment [1] to stop sending cookies (only one of many ways of storing
identifiers) to third-parties in the future, prior research demonstrat-
ing the popularity of storage-based tracking [11, 13, 30, 31, 38, 41],
and expert insight from browser developers.

While the privacy community has had some success in designing
defenses to stateless tracking that protect users without breaking be-
nign, user-serving page functionality[20, 26], researchers, industry,
and activists have been less successful in designing practical, robust
defenses against web-scale stateful third-party tracking. Blocking
the transmission of cookies to third-parties for sub-resource requests
is a welcome emerging development, but it does not provide protec-
tion against intentional stateful third-party tracking by JavaScript
code with access to persistent cookies1, localStorage2, indexDB3,
or other JavaScript accessible storage methods (collectively, “DOM
storage”).

1For completeness, we note that this isn’t completely true, and that HttpOnly cookies
cannot be accessed from JavaScript. But since HttpOnly doesn’t provide protection
against intentional tracking (since such trackers could just omit the HttpOnly
instruction), we don’t consider HttpOnly further in this work, and omit it from further
discussion for concision.
2https://html.spec.whatwg.org/multipage/webstorage.html#the-localstorage-
attribute
3https://www.w3.org/TR/IndexedDB-2/
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Historical attempts at comprehensive stateful tracking protec-
tions have struggled to balance privacy with compatibility. Filter list
approaches which block third-party storage only for “known” track-
ers maintain good compatibility but cannot protect against new or
stealthy trackers. Aggressive global blocking of third-party storage
provides excellent privacy protections but breaks an unacceptably
high amount of benign web content. Recent innovations in stateful
tracking protection, exemplified by the latest iterations of Safari ITP
and Brave Shields, suggest a possible emerging solution to the tra-
ditional privacy/compatibility dilemma: hybrid policies combining
partitioned organization and ephemeral lifetime of third-party stor-
age. However, evaluation of this approach’s effectiveness hinges on
web-scale measurement not only of privacy protections (fairly well
understood by now) but also estimated web breakage/compatibility
caused by storage policies (an open problem at scale).

This work directly addresses this evaluation question by imple-
menting multiple simplified, representative third-party storage poli-
cies in a heavily-instrumented browser (Brave PageGraph [9, 18]),
collecting comprehensive page-behavior metrics under each policy
during a parallel crawl across top sites, and evaluating key privacy
and novel compatibility/breakage indicators among compared poli-
cies. The policies tested include: permissive (third-party storage
allowed globally, best compatibility); blocking (third-party stor-
age blocked globally, worst compatibility), site-keyed (third-party
storage partitioned by first-party but persistent), and page-length
(third-party storage partitioned by and limited to the lifespan of the
top-level page/document).Ourprivacyevaluationconsiders the com-
parative prevalence of potentially-identifying cookie values seen
in storage and quantifies how many third-party domains had the
ability to track our browsers across different first-party sites (cross-
site trackability) and across repeat visits to the same first-party site
(cross-time trackability). Our novel compatibility evaluation exploits
the rich instrumentation of PageGraph to construct “behavior sets”
and to compare their similarity between each alternate policy and
the known-good baseline (no blocking). We complement these auto-
mated experimentswith qualitativemanual assessments of a random
sample of visited pages to assess compatibility through human eyes.

Our privacy results confirm prior experience, and our compat-
ibility results support the view that hybrid ephemeral third-party
storage is emerging as a potential solution to the stateful tracking
problem. All non-permissive third-party storage policies provided
significant cross-site tracking protection, and page-length provided
measurably better cross-time tracking protection than site-keyed.
Page-length and site-keyed performed very similarly on our compat-
ibility metrics, both showing much stronger behavioral similarity to
the permissive baseline than did blocking, the “knownworst-case”
baseline. Our manual compatibility assessment showed generally
low rates of user-perceived breakage across all tested policies, sug-
gesting that the emergence of more effective stateful tracking pro-
tections is prompting a shift away from dependence on third-party
storage for essential functionality.

This work makes the following concrete contributions:

(1) Open source, PageGraph-based, Puppeteer-drived instrumen-
tation system allowing automated privacy and compatibility-
estimate measurements across the web under multiple third-
party storage policy implementations representative of both
deployed and proposed storage systems.

(2) Design and implementation of metrics to programmatically
evaluate the privacy and compatibility implications of pri-
vacy interventions, including a novel system for comparing,
in aggregate, the compatibility effects of different privacy
interventions.

(3) The results of a web-scale evaluation of how third-party stor-
age policies inspired by those deployed in popular browsers
compare in terms of privacy and compatibility benefit.

(4) A complementary manual, qualitative evaluation of the com-
patibility impacts of different privacy interventions.

2 BACKGROUND&MOTIVATION
2.1 Same-Origin Policy & Storage Basics
Browsers isolate storage (e.g., cookies, localStorage, indexDB) ac-
cording to the Same-Origin Policy (SOP) [4]. Though the SOP is
complex and inconsistent in practice [35], the SOP is relatively sim-
ple in regards to browser storage policies .The SOP says that scripts
can access cookies and DOM storage (e.g., localStorage) only for
their executionorigin, andHTTPrequests store and transmit cookies
only for their destination origin.

When loading a website, the first-party is the “site” portion of
the top level document. This is the eTLD+1 of the URL shown in the
navigation bar of the browser. Any sub-resources or sub-documents
included in the page are consideredfirst-party if they’re fetched from
the same eTLD+1 as the top level document. Third-parties are any
site not equal to the top-level document.

The storage values a script can access is determined by the “site”
of the frame that script is executing in, not the site the script was
fetched from. For example, if a page from origin A includes a script
from origin B, the script is a third-party script, but has access to the
first-parties (i.e., site A’s) storage.

2.2 Online Tracking
We use the term “tracking” to refer to a third-party re-identifying
a visitor across multiple site visits which are otherwise unrelated
or associated. Such tracking can be cross-site (i.e., a third-party can
link a visitor’s activities across first-party sites) or cross-time (i.e.,
a third-party can identify the same visitor returning to the same
first-party site across sessions). While many techniques for tracking
have been studied, we focus exclusively on stateful tracking tech-
niques, such as cookies. At root, these rely on a third-party site being
able to access persistent state in different contexts, and using the
persistently stored state to link (conceptually) unrelated behavior.
As we will discuss at length later, approaches for preventing stateful
tracking involve either preventing third-parties from storing values
at all, providing third-parties with different storage context when
embedded in different contexts, or combinations of the two.

2.3 Threat Model
Here we present a simple threat model defining the scope bound-
aries for our proposed storage policy improvements. It provides
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Figure 1: Third-party storage (a) fully allowed, (b) fully blocked, (c) partitioned by first-party context, and (d) scoped to hosting
page life time (our proposal).A, B, & T are distinct domains; T is embedded as a third-party within A& B.

useful criteria for evaluating both deployed and experimental policy
alternatives.

Actors.Weexclusivelyconsider threatsoriginating fromthird-party
content providers engaged inuser tracking.Whilewedoconsider the
possibility of first-party errors or carelessness amplifying the threat
posed by third-party actors, we consider active collusion between
third-parties and first-parties (e.g., the disturbing new tactic of cloak-
ing third-party content behind first-party CNAMEDNS records) to
be out of scope.

Mechanisms. Our focus is on stateful tracking, though we con-
sider instances where stateless tracking mechanisms may be used
to bridge or synchronize stateful sessions. We consider the threat of
fully stateless tracking (i.e., a universal, per-user fingerprint needing
no state transfer) to be out of scope. This choice is deliberate: we
believe stateful tracking iswhere browsers aremost lackingpractical,
robust, compatible defenses. While significant research has gone
into building web-compatible defenses against stateless tracking
(e.g., [20, 26]), the existing techniques for preventing stateful third-
party tracking are either incomplete (i.e., they still allow significant
privacy harm to occur) or incompatible (i.e., they break a significant
number of websites).

Threats. The primary threat considered is classic cross-site user
tracking as enabled by traditional unified, persistent third-party
storage. We do not believe it is controversial to consider such track-
ing, which amounts to disclosure of a user’s browsing history, to
be an undesirable breach of personal privacy. However, there exist
additional subtle cross-time tracking concerns raised by persistent
third-party storage evenwhen it is partitioned by first-party context
(a relatively common proposed defensemechanism; see Figure 1 and
Section 2.4). Such third-party tracking of return-visit activity within
a single first-party context can enable or amplify attacks like session
linking or cookie syncing.

By cookie syncingwe refer not to cross-vendor syncing [30] but to
the possibility of cross-site syncing enabled by browser implementa-
tion flaws. E.g., consider a scenario inwhich a first-party site embeds
a third-party frame. One week later, that frame gains the ability to
cookie sync (e.g., a new browser feature adds enough entropy to
fingerprint). But the next day, that ability is lost (e.g., a high-priority
browser update removes the privacy leak). Effectively, this disaster
scenario temporarily neuters any attempt to partition third-party

stored state by first-party context. The impact on privacy is de-
termined by howmuch longitudinal data is available in third-party
storage tobysyncedacrossfirst-partyboundaries. In theexample sce-
nario, it is one week of browsing data with stable third-party storage
and one day of datawithonly ephemeral storage.Whatweare consid-
ering a threat, then, is not the possibility of cookie-syncing itself, but
rather the scale of damage it could cause. Our concern is defense in
depth, just as cryptographers implementing perfect forward secrecy
do so not because they expect frequent key exposure but because
theywish tomitigate the impact of its hopefully unlikely occurrence.

By session linking wemean third-parties exploiting any flaw that
allows inference of first-party login state to link two or more login
identities that the user intended to keep disassociated. Robust SOP
enforcement should prevent such inference, but loopholes (e.g., Ref-
erer leaks, postMessagemishandling) have been and probably will
continue to be found and exploited in the wild. If such a vulnera-
bility is ever found in a sensitive first-party site (e.g., a web mail or
personal finance portal), the persistence of third-party state across
first-party session boundaries opens up the possibility of a session
linking attack by any third-party content embedded in that site.

Finally, we consider breakage of essential web content to be a
threat, too. Availability has always been a critical component of
information security. If a storage policy prevents all cross-site and
cross-time third-party tracking perfectly but breaks any significant
amount of theweb in the process, userswill not tolerate the breakage
and will revert to policies that are vulnerable to one or more of the
other threats described above.

2.4 Deployed Stateful Tracking Defenses
With the exception of Google Chrome, all of today’s major web
browsers implement proactive user tracking defenses. These de-
fenses illustrate a range of possible trade-offs between privacy and
compatibility. All of them provide some degree of cross-site protec-
tion, preventing third-parties from using stored identifiers to link
browsing behavior across first-party sites. More aggressive defenses
also attempt cross-time protection, preventing third-parties from
using stored identifiers to link browsing behavior across visits to
the same first-party site. Note that these summaries do not cover
tracking defenses unrelated to third-party storage (e.g., third-party
content blocking, first-party storage lifetime restrictions, “bounce”
tracking defenses, fingerprinting defenses, etc.).
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User tracking defenses can be decomposed into two independent
aspects: mechanism (i.e., how storage access is affected) and policy
(i.e., for what actors, underwhat conditions). Mechanisms include al-
tering the lifetimeof third-party storage, partitioning it byfirst-party
site context, or even blocking it entirely. Such defense mechanisms
can be applied to all third-party storage or to a restricted subset of
storage mechanisms (e.g., cookies vs. local storage, HTTP Cookie
headersvs. JS code).Defensepoliciesmaybeglobal, for all third-party
domains; or selective, for third-party domains classified as trackers
based on a priori filter lists or dynamic behavior analysis and scoring.

Microsoft Edge and classic Mozilla Firefox defenses have selec-
tively blocked third-party storage using Disconnect [3] to identify
known trackers, resulting in cross-site and -time protection only as
complete as the filter lists used. Firefox has since introduced4 a strict
“Total Cookie Protection” opt-in mode that partitions third-party
storage by first-party site context globally, providing comprehensive
cross-site protection.

Brave traditionally blocked all third-party storage globally, pro-
viding excellent cross-site and -time protection at the cost of reduced
compatibility. Typical incompatibility issues for classic Brave Shields
were failures of stateful third-party widgets (e.g., a stock history
graph, or an interactive programming language interpreter window)
to load properly without third-party session cookies or similar be-
ing accessible. Recently, Brave has moved to an ephemeral-storage
mechanism in which third-party storage is partitioned by and pre-
vented from outliving individual browsing sessions; this approach
retains most of the cross-site and -time protections of blocking with
improved compatibility.

Apple Safari’s “Intelligent Tracking Prevention” (ITP) defenses
have evolved significantly over time, shifting from selective enforce-
ment policy guided by local machine-learning of tracker identities
to global enforcement of a hybrid blocking/partitioning/lifespan-
shortening mechanism.While cross-site protection with good com-
patibility appears to be Apple’s principle goal, ITP’s most recent
iterations (e.g., flushing what little partitioned third-party storage is
allowedeverybrowser restart) providesagoodmeasureof cross-time
protection as well.

3 METHODOLOGY
We evaluate the privacy vs compatibility trade-offs illustrated by
four real or representative third-party storage policies by comparing
their tracking and compatibility performance during automated,
stateful crawls of popular web sites.

3.1 Stateful CrawlMethodology
3.1.1 Target URLs. Wegenerated a seed list of URLs to visit in paral-
lel using a stateless pilot crawl of the Tranco 1k sites [32]. To achieve
depth and representative sampling of web content, we must explore
more than just the “landing page” of each site. But each of our 8 par-
allel crawls must visit the same sequence of page URLs to produce
comparable results. Coordinating the link spidering and selection
process across parallel crawls introduces needless engineering com-
plexity. Our solution was to perform a stateless pilot crawl using
stock Chromium to visit the Tranco 1k sites’ landing pages and spi-
der three links deep into the site structure. This approach, using the
4https://hacks.mozilla.org/2021/02/introducing-state-partitioning/

2020-08-13 Tranco list snapshot, produced 3,419 total deduplicated
page URLs to visit.

3.1.2 Policy Variants. We collect data using four distinct policy
variants.
Permissive:Allows all forms of third-party storage, as per Figure 1a.
Stock Chrome behavior. Presumed to cause no breakage.
Blocking: Blocks all forms of third-party storage, as per Figure 1b.
Treats access as no-op. Known to cause some site breakage in the
wild; e.g., when third-party frames are unable to maintain session
state across multiple requests.
Site-keyed: Partitions persistent third-party storage by first-party
eTLD+1, as per Figure 1c. Similar to elements of classic Safari ITP
and Firefox’s newly-announced Total Cookie Protection. Expected
to match compatibility and cross-site tracking of page-length. In-
cluded to estimate residual potential for cross-time tracking under
partitioned storage within a given time window of persistence (in
our case, for the entire experiment).
Page-length: Isolates third-party storage in ephemeral partitions,
as per Figure 1d. Similar to recent Brave and Safari ITP policies.
Expected to show compatibility scores in line with the permissive
baseline and tracking protection scores in line with blocking.
It should be stressed that these experimental policies, despite deriva-
tion from and obvious relation to deployed real-world policies, are
intended as comparison points between archetypal approaches, not
between specific browser implementations.

3.1.3 Crawl Execution. We deployed two instances of each tested
policy to verify behavioral consistency and provide similarity-score
baselines (see Section 3.2.2). The crawlers maintained independent,
persistent user profiles for each policy instance to maintain state
across all sequential page visits. The main crawl was repeated once
(two iterations total) to provide data on cross-time tracking across re-
turn visits. All crawlswere performed in parallel and simultaneously
from a single network vantage point. Each page visit was performed
in a freshly launched, non-headless (i.e., rendering to the Xvfb head-
less display server) browser instance. Navigation was allowed to
time out after 30 seconds. Assuming no navigation timeout, our
crawlers waited for 30 seconds after the DOMcontentloaded event
(i.e., main document fetched and parsed but subresources not fully
loaded yet) before tearing down the browser instance. No simulated
user interactions were attempted.

3.1.4 PageGraph Instrumentation. We use PageGraph, an instru-
mentation system built into an experimental branch of Brave, to
record internal page behaviors. PageGraph patches the V8 JS engine
and the Blink HTML rendering engine to capture and annotate a
graph of each HTML document’s DOM structure and the events
that constructed and modified it. Nodes represent entities such as
DOM elements, scripts, HTTP resources, storagemechanisms, and a
selective subset of builtin andDOM-provided JavaScript APIs. Edges
represent relationships between nodes such as DOM structures and
script interactions with DOM elements, DOM events, JavaScript
APIs, and HTTP requests. The set of non-structural edges in each
of these graphs constitute the dynamic behaviors of the originating
page. Behavioral-edge-set similarity can be quantified using Jaccard
index scores to provide a useful proxy for behavioral compatibility
among compared storage policies.

https://hacks.mozilla.org/2021/02/introducing-state-partitioning/
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3.2 Primary EvaluationMethodology
We evaluate our policies’ privacy and compatibility performance
using full-scale quantitative stateful trackingmetrics, full-scalequan-
titative site behavior similaritymetrics, and randomly-sampled qual-
itative assessment of site breakage. All quantitative metrics analysis
focuses on third-party frames not flagged as advertising content.
First-party frames are loaded from the same eTLD+1 as the main
page URL (per the Public Suffix List [5]); all other frames are third-
party. Classification of ads relies on the community-maintained
EasyList [2]. The exclusion of first-party and advertising content
eliminates noise from our evaluation: first-party storage is not af-
fected by our experimental policy changes, and advertising content
is known to change frequently.

3.2.1 Quantitative Privacy Assessments.

Tracking Potential. The central metric we use to quantify poten-
tial for stateful cross-site and cross-time tracking by third-parties is
the potentially identifying cookie flow (PICF). A cookie flow is the com-
bination of anHTTP cookie and a third-party eTLD+1 receiving that
cookie. We consider cookie flows potentially identifying when the
values are at least eight (8) characters long and are globally unique
to a single browser profile during our stateful crawls. There are other
forms of third-party storage available (e.g., local storage), and other
channels by which identifying tokens can be transmitted to third-
parties (e.g., customHTTP headers, query string parameters). But
we use cookies as our representative measure of stateful tracking be-
cause they are unambiguous in structure, ubiquitous as tracking IDs,
and essentially unrestricted by stock Chrome, our baseline. (Both
our page-length storage and site-keyed implementations apply their
storage policies to all forms of third-party storage, not just cookies.)

Cross-Site Tracking. Identical PICFs seen across multiple distinct
top-level sites visited represent potential for cross-site tracking by
the associated third-party domain. We aggregate cross-site PICFs to
count the total number of top-level sites across which each distinct
third-party domain seen could have tracked our crawler profiles,
giving us summary scores of “cross-site trackability” by which to
compare all our storage policies. These scores can be visualized using
cumulative sum curves, as shown in Section 4.2.

Cross-Time Tracking. PICFs seen on a given top-level site across
multiple pages/crawls represent potential for cross-time, or visit-to-
visit, tracking by a given third-party domain. We aggregate cross-
time PICFs to count the total number of third-party domains which
could have tracked our crawler profiles for each distinct top-level site
domainvisited, givingus summary scores of “cross-time trackability”
by which to compare all our storage policies. These scores can be
visualized using cumulative sum curves, as shown in Section 4.3.

3.2.2 Quantitative Compatibility Assessment.
We assess site compatibility across storage policies using a quantifi-
able proxymeasure: similarity of internal page behaviors as reported
by PageGraph. Our insight is to presume no storage-based breakage
for permissive profiles and some unknown (but non-zero) amount of
breakage on blocking profiles. If alternative policy (e.g., page-length
storage) profiles produce content behaviors more similar to the per-
missive baseline than do the blocking profiles, then the alternate
policy is less likely than blocking to cause breakage.

Wemodel and compare content behaviors using the set of non-
structural (i.e., action or event) edges in PageGraph representations
of relevant frames. Similarity between edge sets can be measured
using the Jaccard index: 𝐽 (𝐴,𝐵) = |𝐴∩𝐵 |

|𝐴∪𝐵 | . Index scores range from
0 (no intersection) to 1 (equality). We consider the score undefined
when both sets are empty.

We compare content behaviors across identical frames loaded
on identical pages across all tested policies. Frames and pages are
identified and matched by full URL. The similarity score of the two
permissiveprofilesprovides thecompatibilitybaseline: thepresumed
best-possible similarity score for that frame/page instance. The other
profiles are each comparedwith a single permissiveprofile toprovide
similarity scores to compare against the baseline. The cumulative
sum of all frame/page instance similarity scores for each profile can
be visualized to show which policies track closest to the baseline
across all visited pages (see Section 4.4).

We optimized the set of PageGraph node types included in our
behavioral sets to maximize the distance between blocking policy
scores and the permissive baseline score. Our intuition is that the
baseline score provides a threshold of “reasonable” behavioral differ-
ences between two different instances of the same content loaded in
different browsers at about the same time. The farther away from this
baseline a policy scores, the greater the likelihood of unreasonable,
or breaking, differences in behavior.

We identified 11 PageGraph node types relevant to behavioral
analysis, a set small enough to be amenable to brute force optimiza-
tion across its power set. Optimization relied on a random sample
of 100 frame/site instances extracted from a preliminary full-scale
crawl dataset, whose unoptimized similarity curves matched those
of the entire data set, indicating a representative sampling. On this
data subset we tested the blocking separation from the permissive
baseline for every subset of relevant PageGraph node types. The
results confirmed our intuition that the least helpful node typeswere
structural elements like HTML elements and DOM text blocks; less
intuitively, they also showed that PageGraph’s set of instrumented
DOMmanipulation JavaScript APIs was similarly unhelpful. The
final optimal node type set comprised scripts and PageGraph’s se-
lected JavaScript builtin APIs (e.g., date functions), HTTP resources,
frame structures (DOM roots and frame-owning elements), and stor-
age mechanisms (cookie jars, local and session storage buckets).
Only edges (i.e., behaviors) linking these node types are included in
the behavior similarity results presented in Section 4.4.

3.2.3 Qualitative Compatibility Assessment.
Wefurther augmentourquantitative assessmentof site compatibility
with blinded multi-grader manual analysis for website breakages
within a random sample of sites loading popular third-party content.
To select the URLs for this, we sorted third-party, non-ad-blocked
frame URLs within our crawl dataset by the harmonic mean of the
numberofpagesembedding that frameandthenumberof third-party
cookies set for the frame’s eTLD+1. This metric is higher for frames
which appear on a large number of sites and have access to a large
number of cookies. We selected the top 10 frame URLs with distinct
eTLD+1s while filtering out frames appearing only on non-English
sites, and frames without a content type of HTML or JavaScript.

We randomly selected 10 candidate page URLs for each frame
URL from the prior step, resulting in a total of 100 candidate URLs.
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We adopted a holistic approach to evaluate breakage rather than
simply observing the behavior of the target frame, since a number
of frames did not have real-estate presence on the webpage.

Our gradingmethodology is derived from a similar experiment by
Snyder et al. [37].We had two graders evaluate the policy variants in
Section 3.1.2 for each candidate URL.We recruited five graders, each
with background in web security. This resulted in each grader being
assigned two blocks of 20 URLS, ensuring no block pair is graded
by the same grader pair. The graders would visit a URL first with a
permissive profile, the Chrome default. This visit is our control visit,
followed by a visit to the sameURLwith each of the site-keyed, page-
length, and blocking profiles. Every visit was with a fresh browser
profile to ensure stateless browsing between tests/visits. Subsequent
visits to the candidate URL after the control visit were randomly
coded to eliminate grader bias.Graderswere further instructed grade
no more than 10 URLs in a single session to avoid fatigue.

In our holistic approach, each grader performed as many inter-
active actions on the URL within one minute, the average dwelling
time for a typical web-user on a website [23]. Each grader followed
a checklist of tasks to perform on the site (Appendix B).

After the visit to the URL, The graders scored each coded profile
visit a score of 1 if the visit did not have any perceptible deviations
from the control; 2 if there were some deviations from the control
visit, but without any hindrance to their visiting experience or the
tasks attempted on the site; and 3 if the visit had significant devia-
tions from the control, preventing the graders from replicating their
control visit activities.

Due to the highly subjective nature of the evaluation scheme, our
graders evaluated the candidateURLs independently, unaware of the
other grader’s scores. Our graders had a high agreement percentage
(94.67%).We also computed the Cohen’s Kappa inter-rater reliability
statistic [16] as 0.64, showing statistically substantial agreement
between our graders [25]. We present the results of our manual
evaluation in Section 4.5.

4 RESULTS
4.1 Stateful Crawl Statistics
Our stateful web crawls ran from September 12-16 2020 on a single
Linux virtual machine (40 VCPUs, 100GiB RAM). Combined, the
crawls visited 27,352 total pages using 8 user profiles and produced
280,219 PageGraph files (405 GB).

Error rates (Appendix A, Figure 5) were acceptable if somewhat
amplified by PageGraph internal consistency assertion failures. Er-
rors in this case refer not to page breakage but to hard failures of the
crawl itself, suchasanetwork timeoutorbrowser crash.PageGraph’s
instrumentation is expansive and tracks complex interactions be-
tween JavaScript execution, DOMmanipulation, and network traffic.
Whenever unexpected corner cases (or bugs) prevent it from estab-
lishing unambiguous context for an event or activity, PageGraph
logs the issue and terminates the browser rather than recording
unreliable data.

4.2 Privacy: Cross-Site Tracking Potential
Page-length storage eliminates stateful cross-site tracking as ef-
fectively as does blocking, as seen in Figure 2. The cumulative

0 25 50 75 100 125 150
distinct third-party sites

capable of cross-site cookie tracking

0

200

400

600

800

1000

1200

1400

1600

cu
m

ul
at

iv
e 

co
un

ts
 o

f f
irs

t-p
ar

ty
 si

te
s

ac
ro

ss
 w

hi
ch

 tr
ac

ki
ng

 is
 p

os
sib

le

Permissive-1
Permissive-2
Page-length-1
Page-length-2
Site-keyed-1
Site-keyed-2
Blocking-1
Blocking-2

Figure 2: Of our tested policies, all but permissive essentially
eliminated stateful cross-site tracking potential.
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Figure 3: Our page-length policy significantly outper-
forms both permissive and site-keyed policies at reducing
cross-time tracking potential.

sum curves show the aggregate counts of sites across which third-
parties could trackusers under different policies, calculatedusing the
tracking-potential heuristics described in Section 3.2.1. Page-length,
site-keyed, and blocking policies are roughly equal at preventing
stateful cross-site tracking. This result is logical and unsurprising:
if third-party storage is not available (or is partitioned by first-party
site, or is strictly ephemeral), it cannot be used to pass identifying
state across site boundaries.

4.3 Privacy: Cross-Time Tracking Potential
Page-length storage also eliminates stateful cross-time tracking as
effectively as does full third-party storage blocking, a significant
improvement over site-keyed storage (Figure 3). These curves show
cumulative counts of third-parties which could longitudinally track
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Figure 4: Our page-length policy produces page behaviors
within third-party frames much closer to the permissive
baseline than does the breakage-prone blocking policy.

returnvisitors across theTranco 1k sites, as described in Section 3.2.1.
Unsurprisingly, permissive policy allows the most cross-time track-
ing, as cross-site tracking ability implies cross-time tracking ability.
If persistent third-party storage, evenwhenpartitionedbyfirst-party
site context, is still accessible on repeat visits, cross-time tracking
is possible. Thus, page-length and blocking policies both provide
stronger cross-time tracking protection than site-keyed policy can.

We additionally considered local storage as a medium for stateful
cross-time trackability, to better consider the cross-time tracking
vulnerability of defenses which block third-party cookies but allow
partitioned third-party local storage. Here we apply our PICF ex-
traction workflow to values written-to and read-from local storage
in third-party frame context, dubbed potentially identifying token
sources (PITS). Such tokens are not automatically transmitted to
third-party domains as are cookies, but their presence identifies per-
sistent third-party state that could be synced to a remote domain via
XHRor similar using JavaScript code atwill.We found that local stor-
age PITS are significantly less frequent than PICFs across our dataset
globally, but they are about equally common under site-keyed as
they are under permissive, given an experiment-long time window
of partitioned storage persistence (Appendix A, Figure 6). We con-
clude that strong constraints even on partitioned third-party storage
lifetime (i.e., page-length rather than browser-lifetime length) are
a good first-principle approach for eliminating cross-time tracking.

4.4 Compatibility: Quantitative Assessment
Page-length storage produces page behaviors much closer to the
permissive policy baseline than does full third-party storage block-
ing, as shown in Figure 4. These curves show cumulative sums of
similarity scores between one of our permissive crawl profiles and
all other profiles, normalized to show 1.0 as the maximum possi-
ble score (perfect similarity on all instances). The curve showing
the similarity scores between the two permissive profiles provides
a baseline (i.e., the best scores observed). All pairs of same-policy

Profile Total
Deviations

Severe
Deviations

Site-keyed 7 1
Page-length 8 1
Blocking 10 2

Table 1: Candidate URL deviations as assesses by holistic
manual grading (n=100)

curves show extremely high consistency. While even the baseline
falls short of perfect similarity, there is a clear signal in the grouping
of policies. The blocking policies produced the curves farthest from
the baseline, as expected, well isolated from all the other policies.
The non-blocking policies (site-keyed and page-length) both pro-
duced curves much closer to the baseline than to blocking. The stark
separation of curves strongly suggests that the non-blocking policies
induce significantly less overall deviation from “normal” behavior
(and thus less breakage) than does blocking.

4.5 Compatibility: Qualitative Assessment
Our evaluation showed that, concerning qualitative end-user expe-
rience, the page-length profile performed reliably better than the
blocking profile. As described in Section 3.2.3, we had two distinct
graders independently performmanual evaluation for each of the
three profiles: site-keyed, page-length, and blocking to assess each
policy’s potential for breaking sites on the 100 candidate URLs. The
graders independently graded each candidate site on a scale of 1 to 3
for each of the three profiles to find any deviations from our control
profile, permissive (the Chrome default). We conservatively consid-
ered deviation from the control visit as a form of breakage, resulting
in a score >1. We summarize the instances of graded breakage for
each profile in Table 1.

Considering the 10 deviations observed for the blocking profile,
the page-length profile either scored similar (6 cases) or improved
(4 cases) in terms of raw grader scores. In contrast to the site-keyed
profile (7 deviations), the page-length profile again had either scored
equal (4 cases) or better (3 cases). There were only 2 (0.67%, n=300)
deviations, both non-severe (cases where graders scored a 2) on the
page-length profile, where no deviations were reported on either
site-keyed or blocking profiles. We tried to reproduce the reported
deviations on subsequent visits later on by ourselves and could not
do so. When we further explored for severe deviations (cases where
graders scored a 3) there was a single case where the grader reported
severe deviation on the website for blocking profile, and both page-
length and site-keyed scores indicatednodeviations.All other severe
deviationswere reported on a single URL across all three profiles due
to a webpage crash, which after further debugging we concluded
that it did not stem from our changes within the browser and did
not overlap with the cookie-policy.

5 DISCUSSION
Limitations.Our quantitative assessments of tracking and compati-
bility are subject to the limitations and risks of automatedweb crawls.
While the scale of our crawl is modest, we believe the Tranco 1k
provides a realistic sample of popular, mainstreamweb content and
thus meets our evaluation needs. Spidering 3 links deep past landing



Woodstock ’18, June 03–05, 2018, Woodstock, NY Jordan Jueckstock, Peter Snyder, Shaown Sarker, Alexandros Kapravelos, and Benjamin Livshits

pages likewise provides reasonable sampling of site content without
exhausting our time and space budget, as PageGraph can generate
large volumes of data per page. All our crawlers were stateful and
non-headless, giving them a fair chance at evading the most trivial
forms of bot detection. More sophisticated bot detection depending
on “human” interactions with page content should treat all profiles
identically (as bots; we performed no interaction simulations). We
thus believe that whatever impact bot detection had on our crawlers,
it would have affected all our profiles similarly and not significantly
skewed our results.
Implications. While all of our non-baseline policies did well at
blocking potential cross-site tracking, page-length was clearly the
winner at blocking cross-time tracking aswell. Andwhile cross-time
tracking presents a much more subtle and less-recognized threat
than cross-site tracking, we note that the latest iterations of both
Safari ITP and Brave Shields take an aggressive stance at limiting
the time for which third-party storage is retained (when allowed
in the first place). This convergence is not accidental: limiting the
lifespan, not just the cross-site accessibility, of third-party storage
appears essential to preserving user privacy.

We saw that page-length performed about as well as site-keyed
on our quantitative compatibility estimates, suggesting that the
availability of functional storage is more important to user-facing
compatibility than its longevity. In part this may be necessity: after
all, third-party widgets have to work the first time the user visits a
page, not just when they return. But this phenomenonmay also be
partly due to the trend of aggressively shortened third-party storage
longevity pioneered by Safari ITP and continuedwith Brave’s recent
rollout of ephemeral third-party storage.

Our manual, qualitative compatibility evaluation, while limited
in scope by the labor-intensive nature of the work, produced some
suggestive results. We saw generally low rates of reported breakage,
with correlation to policy fairly inconclusive. To some extent this in-
conclusive correlation may simply reflect the intersection of a small
sample with limited interactions (e.g., no logins) and inevitable hu-
man inconsistencies. It surely also reflects a key difference between
our quantitative and qualitative methodologies: the human graders
were explicitly looking for unambiguous “breakage” as a user-visible
phenomenon, while our quantitative metrics were instead measur-
ing behavioral deviations from a known-good baseline to provide a
heuristic upper-bound for possible breakage. But it may also reflect
an evolution of third-party web publishers practices away from sim-
ply assuming that third-party storage (persistent or not!) is available.
The fact that our manual assessment was performed somemonths
after the initial data collection, after several browser vendors had
announced new and improved stateful tracking protections, lends
some credence to this hopeful view.

6 RELATEDWORK

StatefulUserTracking.Storage-baseduser tracking,usuallycalled
“stateful” tracking and traditionally involving cookies, has been ex-
tensively studied since seminalwork byMayer andMitchell [24] and
Roesner et al. [34]. In subsequentyears, large-scale, high-impactmea-
surement studies of third-party tracking reported emerging threats
like cookie syncing [6], quantified the breadth of cookie tracking
across popular sites [22], and introduced widely used measurement

frameworks adopted by much subsequent work [11]. Recent work
continues to identify evolving and emerging stateful tracking threats
in the areas of mobile web tracking [39], pixel tracking [13], and
cross-device tracking correlation [41].
Cookie Syncing &Other State Transfers. Third-parties can col-
lude to share stored user tracking identifiers and expand their track-
ing scope via cookie syncing, first measured in depth by Olejnik et
al. [28] and more recently studied by Papadopoulos et al. [30, 31].
Our definition of potentially identifying cookie flows shares simi-
larities with Falahrastegar et al.’s methods for measuring distinctive
personal identifiers and the entities sharing themacross theweb [12].

Tracking identifiers can be passed across first-party domains us-
ing means other than stored state, as illustrated by Stopczynski et
al.’s study of attempts to subvert Safari ITP in the wild [38]. At
present, such attacks appear focused on reestablishing traditional
cookie tracking rather than developing a new tracking paradigm.
Browser Fingerprinting.Measurements of and defenses against
stateless tracking via “fingerprinting” have constituted a major cat-
egory of web privacy research in the years since the seminal Panop-
toclick project [10]. Fingerprintingwas found to bemore common in
the wild than first thought [7] and often enabled by new, emerging
technologies [21, 27]. More recent works [14, 33] havemade conflict-
ing claims about the efficacy of Panoptoclick-style fingerprinting
in the wild, leaving its current threat status somewhat ambiguous.
Content Blocking. Published countermeasures against user track-
ing can be broadly categorized as either blocking tracking-related
content (e.g., ads) before they enter the browser or changing browser
implementations to mitigate unwanted effects from such content.
As most ad and tracker blocking currently depends by filter lists,
filter list assessments, improvements, and alternatives are a popular
research area [15] in which the PageGraph instrumentation system
has been used effectively [9, 18, 36]. Alternatives to blocking content,
such as isolated multi-account containers, have also been proposed
and compared against traditional ad blockers [17].
Browser Policies &Mechanisms. page-length storage belongs to
another category of tracking countermeasure research, which fo-
cuses on evaluating and enhancing built-in browser security policies.
Potential use (and evasion) of third-party storage blocking was dis-
cussed [19] before the era of modern tracking research. Subsequent
work has included sophisticated policy enforcement prototype sys-
tems [8, 29] and practical fingerprinting countermeasures [20, 26].
Yu et al. described an elegantly generalized approach to tracking
prevention at the data flow level using𝑘-Anonymity, deployed in the
privacy-focused Cliqz browser [40]. Our approach to quantifying
tracking potential is loosely inspired by this data flow approach to
defining privacy.

7 CONCLUSION
The days of the lose-lose dilemma presented to browser developers
by third-party storage—maintain the status quo and enable mass
user tracking, or block storage access and break a significant part
of the useful web—may be numbered. The combination of cross-site
partitioning and cross-time limiting or purging of third-party stor-
age data appears to be effective, both at protecting user privacy (both
cross-site and cross-time) and at maintaining compatibility with
benign legacy content. We share our contributions with the browser
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research and development community: the design of our metrics
for comparing the privacy and compatibility impact of storage pol-
icy changes; our instrumentation platform, made available as open
source patches to Chromium (atop Brave’s PageGraph), our auto-
mated and manual results presented in this work, and the complete
automated crawl dataset.
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Appendices

A SUPPLEMENTARY FIGURES
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Figure 5: Crawl success rate varied modestly across policies
but was always reasonably high.
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Figure 6: Potential use of local storage state for cross-time
tracking is much lower than use of cookies, but nearly as
frequent under persistent partitioning as under permissive.

B GRADERTASK
CHECKLIST FORMANUAL EVALUATION

1. Scroll the page, are there any obvious portions that did not load
and/or break?
2. Are ads loaded, canyou click on them?Do theybehave as expected
(redirect to the ad source/provider?)
3. Is there an embedded video? Can you play/stream it?

4. Is there any embedded social media (Facebook, twitter, Instagram,
TikTok) content? Can you click them?Do they take you to the source
site?
5. Is this a news or media portal site? Then ...
5.1. Can you search for articles using the search box (if present)?
5.2. Are there socialmedia share buttons?Do theywork as expected?
5.3. Are there newsletter sign-up forms/pop-ups? Can you submit
them (do not use personal info)?
6. Is this a e-commerce site? Then ...
6.1. Can you search for a product using the search box (if any)?
6.2. Can you add product to your cart and initiate checkout (do not
use personal info)?
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