
SpeedReader: Reader Mode Made Fast and Private
Mohammad Ghasemisharif
University of Illinois at Chicago

Chicago, IL, USA
mghas2@uic.edu

Peter Snyder
Brave Software

San Francisco, CA, USA
pes@brave.com

Andrius Aucinas
Brave Software
London, UK

aaucinas@brave.com

Benjamin Livshits
Brave Software & Imperial College London

London, UK
ben@brave.com

ABSTRACT
Most popular web browsers include “reader modes” that improve
the user experience by removing un-useful page elements. Reader
modes reformat the page to hide elements that are not related to the
page’s main content. Such page elements include site navigation,
advertising related videos and images, and most JavaScript. The
intended end result is that users can enjoy the content they are
interested in, without distraction.

In this work, we consider whether the “reader mode” can be
widened to also provide performance and privacy improvements.
Instead of its use as a post-render feature to clean up the clutter on a
page we propose SpeedReader as an alternative multistep pipeline
that is part of the rendering pipeline. Once the tool decides during
the initial phase of a page load that a page is suitable for readermode
use, it directly applies document tree translation before the page is
rendered. Based on ourmeasurements, we believe that SpeedReader
can be continuously enabled in order to drastically improve end-
user experience, especially on slow mobile connections. Combined
with our approach to predicting which pages should be rendered
in reader mode with 91% accuracy, SpeedReader achieves average
speedups and bandwidth reductions of up to 27× and 84×, respec-
tively.We further find that our novel “reader mode” approach brings
with it significant privacy improvements to users. Our approach
effectively removes all commonly recognized trackers, issues 115
fewer requests to third parties, and interacts with 64 fewer trackers
on average, on transformed pages.

CCS CONCEPTS
• Human-centered computing → Web-based interaction; •
Information systems→ Browsers; Clustering and classifica-
tion; Content analysis and feature selection; • Security and privacy
→ Privacy protections.

KEYWORDS
Reader Mode; Boilerplate Removal; Web Document Classification;
Web Performance; Ad Blocking

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313596

ACM Reference Format:
Mohammad Ghasemisharif, Peter Snyder, Andrius Aucinas, and Benjamin
Livshits. 2019. SpeedReader: Reader Mode Made Fast and Private. In Pro-
ceedings of the 2019 World Wide Web Conference (WWW ’19), May 13–
17, 2019, San Francisco, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3308558.3313596

1 INTRODUCTION
“Web bloat” is a colloquial term that describes the trend in websites
to accumulate size and visual complexity over time. The phenom-
ena has been measured in many dimensions, including total page
size [7], page load time [5, 44, 45], memory needed [30], number of
network requests [16, 28], amount of scripts executed [26, 34, 37, 39]
and third parties contacted [25, 26, 28]. This work suggests that
growth in page size and complexity is outpacing improvements in
device hardware. All of this has a predictably negative impact on
user experience.

Web users and browser vendors have reacted to this “bloat” in a
variety of ways, all partially helpful, but with significant downsides.
Ad and tracking blockers are a popular and useful tool for reducing
the size complexity of sites. Prior work has shown that these tools
can be effective in reducing privacy leaks [31], network use, and
extend device memory life. Such tools, which use filter lists, are
inherently limited in the scope of improvements they can achieve.
While these filter lists are large [42], they are small as a proportion
of all URLs on the web. Similarly, while these lists are updated often,
they are updated slowly compared to URL updates on the web.

Similarly, “reader mode” tools, provided in many popular
browsers and browser extensions, are an effort to reduce the grow-
ing visual complexity of websites. Such tools attempt to extract
the subset of page content useful to users, and remove advertising,
animations, boilerplate code, and other non-core content. Current
“reader modes” do not provide the user with resource savings since
the referenced resources have already been fetched and rendered.
The growth and popularity of such tools suggest they are useful to
browser users, looking to address the problem of page clutter and
visual “bloat”.

In this work, we propose a novel strategy called SpeedReader
for dealing with resource and bloat on websites. Our technique
provides a user experience similar to existing “reader mode” tools,
but with network, performance, and privacy improvements that
exceed existing ad and tracking blocking tools, on a significant
portion of websites. Significantly, SpeedReader differs from exist-
ing deployed reader mode tools by operating before page rendering,

https://doi.org/10.1145/3308558.3313596
https://doi.org/10.1145/3308558.3313596

which allows it to determine which resources are needed for the
page’s core content before fetching.
How we achieve speedups. SpeedReader achieves its perfor-
mance improvements through a two-step pipeline:

(1) SpeedReader uses a classifier to determine whether there
is a readable subset of the initial, fetched page HTML. This
classifier is trained on a labeled corpus of 2,833 websites (see
Section 3), and determines whether a page can be display in
reader mode with 91% accuracy.

(2) If the classifier has determined that the page is readable,
SpeedReader extracts the readable subset of document be-
fore rendering, using a variety of heuristics developed in prior
research [24] and browser vendors [9, 23], and passes the
simplified, reader mode document to the browser’s render
layer. This tree translation step is described in Section 4.

Deployment. Combined with a highly accurate classifier of “read-
able” pages, the drastic improvements in performance, reduction in
bandwidth use and elimination of trackers in reader mode make
the approach practical for continuous use. We therefore propose
SpeedReader as a sticky feature that a user can toggle to be always
on. This approximates the experience of using an e-book reader,
but with strengths of content availability on the web. It is also a
suitable strategy for content prerendering or prefetching that could
be implemented by web browser vendors, automatically delivering
graceful performance degradation in poor connectivity areas or on
underpowered mobile devices until the rest of the page content can
be fetched for a complete render.
Contributions.

• Novel approach to Reader Mode - combining machine-
learning driven approach to checking whether content can
be transformed to text-focused representation for end-user
consumption.

• Applicability - we demonstrate that 22.0% of web pages
are convertible to reader mode style in a dataset of pages
reported popular by Alexa. We further demonstrate that
46.27% of pages shared on social networks are readable.

• Privacy - we demonstrate that using reader mode in the
proposed design provides superior privacy protection, ef-
fectively removing all trackers from the tested pages, and
dramatically reducing communication with third-parties.

• Ad Blocking - we show that our unique reader mode ap-
proach blocks ads at least as well as existing ad blocking tools,
blocking 100% of resources labeled as advertising related by
EasyList in a crawl of 91,439 pages, without the need to use
hand curated, hard-coded filter lists.

• Speed - we find that the lightweight nature of reader mode
content results in huge performance gains, with up to 27×
page load time speedup on average, together with up to 84×
bandwidth and 2.4× memory reduction on average.

Paper organization. The rest of this paper is structured as follows.
Section 2 provides background information to place SpeedReader
in context. Section 3 describes the design, evaluation and accuracy
of the classifying step in the SpeedReader pipeline, and Section
4 gives the design and evaluation of the reader mode extraction
step in the SpeedReader pipeline. Section 3.3 measures how many

websites user encounters that are amenable to SpeedReader, under
several browser use scenarios. Section 5 provides some discussion
for how our findings can inform future readability, privacy and
performance work, Section 6 places this work in the context of
prior research, and Section 7 concludes.

2 BACKGROUND
2.1 Terminology
This subsection presents several terms that are not standardized.
We present them up front, to ease the understanding of the rest of
the work.

Reader mode.We use the term “reader mode” to describe any tool
that attempts to extract a useful subset of a website for a simplified
presentation. These tools can be either included in the web browser
by the browser vendor, added by users through browser extensions,
or provided by third parties as a web service. Our use of the term
“reader mode” is generic to the concept, and should not be confused
with any specific tool.

Classification and transduction. Reader mode tools generally
include both a technique for determiningwhether a page is readable,
which we refer to as “classification”, and a strategy for converting
the initial HTML tree into a simplified reader mode tree, which we
refer to as “tree transduction”. Though most reader mode tools in-
clude both steps within a single tool or library, they are conceptually
distinct.

Readable.We use the term “readable” to describe whether a web
page contains a subset of content that would be useful to display in a
reader mode presentation. Reader mode presentation works best on
pages that are text and image focused, and that are mostly static (i.e.
few interactive page elements). Examples of such readable pages in-
clude articles, blog posts, and news sites. Reader mode presentation
does not work well on websites that are highly interactive, or when
a page’s structure is significant to the page’s content. Examples
of such non-readable pages include web applications (e.g. Google
Mail, Google Maps) or pages that are indexes of other content.

2.2 Existing Reader Modes
Several popular web browsers include reader modes designed to
simplify a page’s presentation, so that browser users can read the
page’s contents without distraction of visual clutter such as adver-
tisements, page animations, and unnecessary page boilerplate (e.g.
footers, page navigation, comments).

In this section, we give a brief description of several existing
reader mode tools, how they’re deployed by their authors, and how
they are used in the evaluations given in the rest of this paper.

Readability.js. Readability.js [9] is an open source reader mode
library, implemented in JavaScript. It is maintained by Mozilla, and
is used for the reader mode function in Firefox. The code is closely
related to “Readability” [2], an open sourced library developed by
Arc90 and used for their now-defunct readability.com web service.
Classification works by looking for the element on the page with
the highest density of text and link nodes. If the number and density
of text and link nodes in that element exceed a given threshold,
the library treats the page as readable. Tree transduction works

2

readability.com

by normalizing the contents of the text-and-link dense element (to
remove styling and other mark up), looking for near-by images for
inclusion, and using text patterns in the document that identify the
page’s author, source and publication date.

Significant to SpeedReader, Readability.js does not consider any
display or presentation information when performing either the
classification or tree transduction steps. This means that the page
does not need to be loaded and rendered to generate a reader mode
presentation (though in practice Firefox does not use this library in
this way).

Safari Reader View. Safari Reader View is a JavaScript library
that implements the reader mode presentation in Safari. Like Read-
ability.js, it is also a fork from Arc90’s “Readability”, though Apple
has changed how the library works in significant ways. In addition
to looking for elements with high text and anchor density, Sa-
fari Reader View also uses presentation-level heuristics, including
where elements appear on the page and what elements are hid-
den from display by default. Relevant to SpeedReader, this means
that Safari Reader View must load a page and at least some of its
resources (e.g. images, CSS, JavaScript) to perform either the clas-
sification or tree transduction level decisions. Because significant
portions of Safari Reader View require a document be fetched and
rendered before being evaluated, we do not consider it further in
this work (for reasons that are detailed in Sections 3 and 4).

BoilerPipe. BoilerPipe is an academic research project from
Kohlschütter et al. [24], and is implemented in Java. BoilerPipe
has not been deployed directly by any browser vendor. BoilerPipe
does not provide functionality for (readability) classification, and
assumes that any HTML document contains a readable subset. For
tree transduction, BoilerPipe considers number of words and link
density features. Like Readability.js, it does not require a browser
to load and render a page in order to do reader mode extraction.
Their analysis reveals a strong correlation between short text and
boilerplate, as well as long text and actual content text (of the tex-
tual content) on the Web. Using features with low calculation cost
such as number of words enables BoilerPipe to lower the overhead
while maintaining high accuracy.

DOMDistiller.DOMDistiller is a JavaScript and C++ library main-
tained by Google, and used to implement reader mode in recent
versions of Chrome. The project is based on BoilerPipe, though
has been significantly changed by Google. The classification step
in DOM Distiller uses a classifier based approach, and considers
features such as whether the page’s URL contains certain keywords
(e.g. “forum”, “.php”, “index”), if the page’s markup contains Face-
book open graph, Google AMP, identifiers, or the number of “/”
characters used in the URL’s path, in addition to the text-and-link
density measures used by Readability.js. At a high level, the tree
transduction step also looks at text-and-link dense element in the
page, as well as special-cased embedded elements, such as YouTube
or Vimeo videos.

DOM Distiller considers some render-level information in both
the classification and tree transduction steps. For example, any
elements that are hidden from display are not included in the text-
and-link density measurements. These render-level checks are a

Extract features

HTML </>

Page rendering,
executing
JavaScript

HTML </>

Has readable
subset?(Classifier)

Tree
transduction

Reader Mode

Fetching
resources,

trackers, ads, etc.

Get necessary
resources for
reader mode

Fetching
resources,

trackers, ads, etc.

No

Yes

Extract features

Has readable
subset?(Classifier)

Show the reader
mode button

Do not show the
reader mode
button

Tree
transduction

Reader Mode

Get necessary
resources for
reader mode

Page rendering,
executing
JavaScript

No

Yes

Figure 1: Comparison of SpeedReader (left) with other existing
reader modes (right)

small part of DOM Distiller’s strategy. We modified DOM Distiller
to remove these display level checks, so that DOM Distiller could
be applied to prerendered HTML documents. We note that the
evaluation of DOM Distiller in this work uses this modified ver-
sion of DOM Distiller, and not the version that Google ships with
Chrome. We expect this modification to have minimal effects on
the discussed measurements, but draw the reader’s attention to this
change for completeness.

2.3 Comparison to SpeedReader
The reader mode functionality shipped with all current major
browsers is applied after the document is fully fetched and ren-
dered.1 This greatly restricts the possible performance, network
and privacy improvements existing reader modes can achieve. In
fact, in some reader mode implementations we measured, using
reader modes increased the amount of network used, as some re-
sources were fetched twice, i.e. once for the initial page loading,
and then again when presenting images in the reader mode display.

Most significantly, SpeedReader differs from existing reader
mode techniques in that it is implemented strictly before the display,
rendering, and resource-fetching steps in the browser. SpeedReader
can therefore be thought of as a function that sits between the
browser’s network layer (i.e. takes as input the initial HTML doc-
ument), and returns either the received HTML (when there is no
readable subset), or a greatly simplified HTML document, represent-
ing the reader mode presentation (when there is a readable subset).
Figure 1 provides a high level comparison of how SpeedReader
functions, compared to existing reader modes.

The fact that SpeedReader only considers features available in
the initial HTML and URL enables SpeedReader to achieve perfor-
mance orders of magnitude above existing approaches. Figure 2

1While Readability.js does not require that the page be rendered before making reader
mode evaluations, in practice Firefox does not expose reader mode functionality to
users until after the page is fetched and loaded.

3

Figure 2: An example page loaded with Google Chrome browser
with no modifications

provides a strawman example of a news page as delivered to a stan-
dard client: including portal branding and content, but also a range
of links to different articles, images and trackers, for a total of 2.7MB
of data transferred and 53 scripts executed. Figure 3 demonstrates
the functionality of SpeedReader when applying existing reader
mode transducers to just the initial HTML document. Therefore,
for documents SpeedReader determines are readable, the sources
of SpeedReader improvements include:

• Never fetching or executing script or CSS.
• Fetching far fewer images or videos (since images and videos
not core to the page’s presentation are never retrieved).

• Performing network requests to far fewer third parties (zero,
in the common case).

• Saving processing power from not rendering animations,
videos or complex layout operations, since reader mode pre-
sentations of page content are generally simple.

The above are just some of the ways that SpeedReader is able to
achieve considerable performance improvements. The following
sections describe how SpeedReader’s classification and tree trans-
duction steps were designed and evaluated, and what percentage
of websites are amenable to SpeedReader’s approach.

3 PAGE CLASSIFICATION
SpeedReader uses a two stage pipeline for generating reader mode
versions of websites. This section presents the design and evaluation
of the first half of the pipeline, the classification step.

Figure 3: The example page transformed with each of the evaluated
SpeedReader transducers

3.1 Classifier Design
The classification step of SpeedReader uses a random forest clas-
sifier, trained on a hand-labeled data set of 2,833 websites. Our
classifier takes as input a string, depicting an HTML document,
and returns a boolean label of whether there is a readable subset of
the document. We note that the input to the classifier is the initial
HTML returned by the server, and not the final state of the website
after JavaScript execution.

Our classifier is designed to execute quickly, since document
rendering is delayed during classification. The classifier is trained
using 50 estimators, it expands the nodes until all leaves are pure or
contain less than 2 samples, and considers 21 features, each selected
to be extractable quickly. Selected features include the number of
text nodes, number of words, the presence of Facebook open graph
or Google AMP markup, and counts for a variety of other tags.

Our classifier considers the following features. We have made
the source code for our classifier available publicly as well.2

• Counts of the following tags: <p>, , , <dl>,
<div>, <pre>, <table>, <select>, <article>, <section>,
<blockquote>, <a>, , <script>

• Count of block elements that contain at least 400 words.
• # of words in block elements that match above condition.
• Number of path segments in the URL.
• Boolean determination if the page has any of the following
metatags: amphtml, fb_pages, og_article.

• Boolean determination if the page has plaintext match for
any of schema.org markup for Article, NewsArticle or
APIReference.

3.2 Classifier Accuracy
The goal of the classifier in SpeedReader is to predict whether the
end result of a page’s fetching and execution will result in a readable
page, based on the initial HTML of the page. This section describes
the data set we used to both train the SpeedReader classifier, and

2https://github.com/brave/speedreader-paper-materials.git

4

https://github.com/brave/speedreader-paper-materials.git

Table 1: Description of data set used for evaluating and training
“readability” classifiers.

Data set Number of pages % Readable

Article pages 956 91.8%
Landing pages 932 1.5%
Random pages 945 22.0%

Total 2,833 38.8%

Table 2: Accuracy measurements for three classifiers attempting to
replicate the manual labels described in Table 1.

Classifier Precision Recall

ReadabilityJS 68% 85%
DOM Distiller 90% 75%
SpeedReader Classifier 91% 87%

to evaluate its accuracy against existing popular, deployed reader
mode tools.
Data Set. To assess the accuracy of our classifier, we first gathered
2,833 websites, summarized in Table 1. Our data set is made up
of three smaller sets of crawled data, each containing 1,000 URLs,
each meant to focus on a different kind of page, with a different
expected distribution of readability. 1,000 pages were URLs selected
from the RSS feeds of popular news sites (e.g. The New York Times,
ArsTechnica), which we expected to be frequently readable. The
second 1,000 pages were the landing pages from the Alexa 1K,
which we expected to rarely be readable. The final 1,000 pages
were selected randomly from non-landing pages linked from the
landing pages of the Alexa 5K, which we expected to be occasionally
readable. We built a crawler that, given a URL, recorded both the
initial HTML response, and a screenshot of the final rendered page
(i.e. after all resources had been fetched and rendered, and after
JavaScript had executed). We applied our crawler to each of the
3,000 selected URLs. 167 pages did not respond to our crawler,
accounting for the difference between the 3,000 selected URLs and
the 2,833 pages in our data set.

Finally, we manually considered each of the final page screen-
shots, and gave each a boolean label of whether there was a subset
of page content that was readable. We considered a page readable
if it met the following criteria:

(1) The primary utility of the pagewas its text and image content
(i.e. not interactive functionality).

(2) The page contained a subset of content that was useful, with-
out being sensitive to its placement on the page.

(3) The usefulness of the page’s content was not dependent on
its specific presentation or layout on the website.

This meant that single page applications, index pages, and pages
with complex layout were generally labeled as not-readable, while
pages with generally static content, and lots of text and content-
depicting media, were generally labeled readable. We also share
our labeled data,3 and a guide to the meaning behind the labels,4
to make our results transparent and reproducible.
Evaluation.We evaluated our classifier on our hand labeled corpus
of 2,833 websites, performing a standard ten-fold cross-validation.
3https://github.com/brave/speedreader-paper-materials/blob/master/labels.csv
4https://github.com/brave/speedreader-paper-materials/blob/master/labels-legend.
txt

1 10 100 1000 10000 100000
Time (ms)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Sh
ar

e
of

 P
ag

es

Classification = 1.9

Replay = 15.5 Broadband = 652

3G = 2606

curl, domestic broadband
curl, simulated 3G
replayed trace
prediction time

Figure 4: Time to fetch initial HTML document.

For comparison sake, we also evaluated the accuracy of the clas-
sification functionality in Readability.js and our modified version
of DOM Distiller when applied to the same data set, to judge their
ability to predict the final readability state of each document, given
its initial HTML. We note that Readability.js is designed to be used
this way, but that this prediction point is slightly different than how
DOM Distiller is deployed in Chrome. In Chrome, DOM Distiller
labels a page as readable based on its final rendered state. This eval-
uation of DOMDistiller’s classification capabilities should therefore
not be seen as an evaluation of DOM Distiller’s overall quality, but
only its ability to achieve the kinds of optimizations sought by
SpeedReader. Table 2 presents the results of this measurement. As
the table shows, SpeedReader strictly outperforms the classifica-
tion capabilities of both DOM Distiller and Readability.js. DOM
Distiller has a higher false positive rate than our classifier, while
Readability.js has a higher false negative rate.

3.3 Classifier Usability
Problem Statement. Our classifier operates on complete HTML
documents, before they are rendered. As a result, the browser is not
able to render the document until the entire initial HTML document
is fetched. This is different from how current browsers operate,
where websites are progressively rendered as each segment of the
HTML document is received and parsed. This entails a trade off
between rendering delay (since rendering is delayed until the initial
HTML document) and network and device resource use (since,
when a page is classified as readable, far fewer resources will be
fetched and processed).

In this sub-section, we evaluate the rendering delay caused by
our classifier, under several representative network conditions. The
rendering delay is equal to the time to fetch the entire initial HTML
document. We find that the rendering delay imposed is small, espe-
cially compared to the dramatic performance improvements deliv-
ered when a page is readable (discussed in more detail in Section 4).
Classification Time.We evaluated the rendering delay imposed
by our classifier by measuring the time taken to fetch the initial
HTML for a page, under different network conditions, and com-
pared it against the time taken for document classification.

5

https://github.com/brave/speedreader-paper-materials/blob/master/labels.csv
https://github.com/brave/speedreader-paper-materials/blob/master/labels-legend.txt
https://github.com/brave/speedreader-paper-materials/blob/master/labels-legend.txt

Table 3: Measurements of how applicable our readability strategy is
under common browser use scenarios.

Measurement # measured # readable % readable

Popular pages 42,986 9,653 22.5%
Unpopular pages 40,908 8,794 21.5%

Total: Random crawl 83,894 18,457 22.0%

Reddit linked 3,035 1,260 41.51%
Twitter linked 494 276 31.2%
RSS linked 506 331 65%

Total: OSN 4,035 1,867 46.27%

First, we determined how long our classifier took to determine
if a parsed HTML document was readable. We did so by parsing
each HTML string with myhtml, a fast, open source, C++ HTML
parser [4]. We then measured the execution time taken to extract
the relevant features from the document, and to return the predicted
label. Our classifier took 2.8 ms on average and 1.9 ms in the median
case. Next, we measured the fixed, simulation cost time of serving
each web page from a locally hosted web server, which allowed
us to account for the fixed overhead in establishing the network
connection, and similar unrelated browser book keeping operations.
This time was 22.3 ms on average, and 15.5 ms median.

Finally, we selected two network environments to represent dif-
ferent network conditions and device capabilities web users are
likely to encounter: a fast, domestic broadband link, with 50 Mbps
uplink/downlink bandwidth and 2 ms latency as indicated by a pop-
ular network speed testing utility,5 and a simulated 3G network,
created using the operating system’s Network Link Conditioner.6
We use a default 3G preset with 780 kbps downlink, 330 kbps uplink,
100 ms packet delay in either direction and no additional packet loss.
Downloading the documents on such connection took 1,372 ms
/ 652 ms (average/median) and 4,023 ms / 2,516 ms for the two
cases respectively. Figure 4 summarizes the results of those mea-
surements. Overall, the approximately 2.8 ms taken for an average
document classification is a tiny cost compared to just the initial
HTML download on reasonably fast connections. It could poten-
tially be further optimized by classifying earlier, i.e. when only a
chunk of the initial document is available. Initial tests show promis-
ing results, however this adds significant complexity to patching
the rendering pipeline and we leave it for future work.

3.4 Applicability to the Web
While subsequent sections will demonstrate the significant per-
formance and privacy improvements provided by SpeedReader,
these improvements are only available on a certain type of web
document, those that have readable subsets. The performance im-
provements possible through SpeedReader are therefore bounded
by the amount of websites users visit that are readable.

In this subsection, we determine how much of the web is
amenable to SpeedReader, by applying our classifier to a sampling
of websites, representing different common browsing scenarios. Do-
ing so allows us to estimate the benefits SpeedReader can deliver
5speedtest.net - web service that provides analysis of Internet access performance
metrics, such as connection data rate and latency
6Network Link Conditioner is a tool released by Apple with hardware IO Tools for
XCode developer tools to simulate different connection bandwidth, latency and packet
loss rates

as well as its relevance to the web. As presented in Table 3, we find
that a significant number of visited URLs are readable, suggesting
that SpeedReader can deliver significant privacy and performance
improvements to users. This subsection continues by describing
how we selected URLs in each browsing scenario.
Websites by popularity. We first estimated how many pages
hosted on popular and unpopular domains are readable. To do
so, we first created two sets of domains, a popular set, consisting
of the most popular 5,000 domains, as determined by Alexa, and an
unpopular set, comprising a random sample of pages ranked 5,001–
100,000. For each domain, we conducted a breadth three, depth
three crawl. We first visited the landing page for the domain, and
recorded all URLs linked to pages with the same TLD+1 domain.
Then we selected up to three URLs from this set, and repeated the
above process another time, giving a maximum of 13 URLs per do-
main, and a total data set of 91,439 pages. The crawl was conducted
from AWS IP addresses on 17-20 October 2018.
Social network shared content. We next estimated how much
content linked to from online social networks is readable, to sim-
ulate a user that spends most of their browsing time on popular
online social networks, and generally only browses away to view
shared content. We gathered URLs shared from Reddit and Twitter.
We gathered links shared on Reddit by using RedditList [32] to
obtain top 125 subreddits ranked based on their number of sub-
scribers. We then visited the 25 posts of each popular subreddit
and extracted any shared URLs. For Twitter, we extracted shared
links from the top 10 worldwide Twitter trends by crawling and
extracting shared links from their Tweets.
RSS / feed readers. Finally, we estimated how much content
shared from RSS feeds is readable, to simulate a user who finds
content mainly through an RSS (or similar) aggregation service.
We built a list of RSS-shared content by crawling the Alexa 1K,
identifying websites that included RSS feeds, and fetching the five
most recent pages of content in each RSS feed.

3.5 Conclusion
In this section we have described how SpeedReader determines
whether a page should be rendered in reader mode, based on its
initial HTML. We find that SpeedReader outperforms the classi-
fication capabilities of existing, deployed reader mode tools. We
also find that the overhead imposed by our classification strategy
is small and acceptable in most cases, and dwarfed by the perfor-
mance improvements delivered by SpeedReader, for cases when a
page is judged readable.

4 PAGE TREE TRANSDUCTION
This section describes how SpeedReader generates a reader mode
presentation of a page, for pages that have been classified as read-
able. Our evaluation includes three possible reader mode renderings,
each presenting a different trade off between amount of media in-
cluded, performance and privacy improvements.

Generating a reader mode presentation of an HTML document
can be thought of as translating one tree structure to another: taking
the document represented by the page’s initial HTML and generat-
ing the document containing a simplified reader mode version. This
process of tree mapping is generally known as tree transduction.

6

speedtest.net

Table 4: Description of data set used for evaluating the performance
implications of different content extraction strategies.

Measurement Value

Measurement date 17-20 October 2018
crawled domains 10,000
crawled pages 91,439
domains with readable pages 4,931
readable pages 19,765
% readable pages 21.62%

We evaluate Tree transduction by comparing the performance and
privacy improvements of the three techniques (Readability.js, DOM
Distiller and BoilerPipe) described in detail in Section 2.2.

4.1 Limitations and Bounds
We note that we did not attempt any evaluation of how users per-
ceive or enjoy the reader mode versions of pages rendered by each
considered technique. We made this decision for several reasons.

First, two of the techniques (Readability.js and DOMDistiller) are
developed and deployed by large browser vendors, with millions
or billions of users. We assume that these large companies have
conducted their own usability evaluation of their reader mode
techniques, and found them satisfactory to users.

Second, the third considered tree transduction technique,
Kohlschütter et al’s BoilerPipe [24], is an academic work that in-
cludes its own evaluation, showing that the technique can success-
fully extract useful contents from HTML documents. We assume
that the authors’ evaluation is comprehensive and sufficient, and
that their technique can successfully render pages in reader mode
presentations. Finally, we are planning to deploy a tree transducer
different from existing techniques and a more thorough subjective
evaluation of its presentation is left for future study.

4.2 Evaluation Methodology
We compared the performance and privacy improvements achieved
through SpeedReader’s novel application of three tree transduc-
tion techniques: Readability.js, DOM Distiller and BoilerPipe. We
conducted this evaluation in three stages.

First, we fetched the HTML of each URL in the random crawl
data set outlined in Table 3, again from an AWS IP. The HTML
considered here is only the initial HTML response, not the state of
the document after script execution. We evaluated whether each
of the 91,439 fetched pages that were classified as readable, by
applying the SpeedReader classifier to each page. We then reduced
the data set to the 19,765 pages (21.62%) were readable.

Second, we revisited each URL classified as readable to collect
a complete version of the page. To minimize variations in page
performance and content during the testing, we collected the "replay
archive" for each page using the "Web Page Replay" (WPR) [22]
performance tool. WPR is used in Chrome’s testing framework for
benchmarking purposes and works as a proxy that records network
requests or responds to them instead of letting them through to
the source depending on whether it works in "record" or "replay"
mode.

Finally, we applied each of the three tree transduction techniques
to the remaining 19,765 HTML documents, and compared the net-
work, resource use, and privacy characteristics of each transformed

Table 5: Performance comparisons of three popular readability tree
transducer strategies, as applied to the data set described in Table 4.
Values are given as Average, Median. Gain multiplier (×) is calcu-
lated for each page load and Average and Median values are re-
ported.

Transducer Resources Data Memory Load Time
(#) (KB) (MB) (ms)

- A M A M A M A M

Default 144 91 2,283 1,461 197 174 1,813 1,069
ReadabilityJS 5 2 186 61 85 79 583 68
Dom Distiller 5 2 186 61 84 79 550 63
BoilerPipe 2 2 101 61 81 77 545 44

Gain (×)

ReadabilityJS 51 28 84 24 2.4 2.1 20 11
Dom Distiller 52 32 84 24 2.4 2.1 21 12
BoilerPipe 77 48 84 24 2.4 2.1 27 15

page, against the full version of each page. We evaluate perfor-
mance and privacy characteristics of each page by visiting the URL
as replayed from its archive. These findings are described in detail
in the next subsections.

We note that using a replay proxy with a snapshot of content
often underestimates the costs of a page load. Despite taking care
to mitigate the effects of non-determinism by injecting a small
script that overrides date functions to use a fixed date and random
number generator functions to use a fixed seed and produce a
predictable sequence of numbers, it cannot account for all sources
of non-determinism. For all requests that the proxy cannot match, it
responds with a Not Found response. We notice that it results in a
small number of requests being missed, primarily those responsible
for dynamic ad loading or tracking. It also occasionally interferes
with site publisher’s custom resource fetching retry logic, where
the same request is retried a number of times unsuccessfully, before
the entire page load times out and the measurement is omitted.

4.3 Results: Performance
We measured four performance metrics: number of resources re-
quested, amount of data fetched, memory used and page load time.
These results are summarized in Table 5 and Figure 5.

We ran all measurements on AWS m5.large EC2 instances. For
performance measurements, one test was executed at a time, per
instance. For each evaluation, we fetched the page from a previ-
ously collected record-replay archive, with performance tracing
enabled. Once the page was loaded and the performance metrics
are recorded, we closed the browser and proxy, and started the
next test. No further steps were taken to minimize the likelihood
of test VM performance being impacted by interfering workloads
on the underlying hardware. For all tests, we used an unmodified
Google Chrome browser, version 70.0.3538.67, rendered in Xvfb.7
Although profiling has overheads of its own [33], in particular for
memory use and load times, we used a consistent measurement
strategy across all tests, and therefore expect the impact to also be
consistent and minor compared to relative performance gains.

We measured a page’s load time as the difference between
navigationStart and loadEventEnd events [46] in the main
frame (i.e. the time until all sub-resources have been downloaded
7While Chrome "headless" mode is available, it effectively employs a different page
rendering pipeline with different load time characteristics and memory footprint.

7

1 10 100 1000 10000
Data Downloaded (KB)

0.0%

25.0%

50.0%

75.0%

100.0%

Sh
ar

e
of

 P
ag

es

Normal Page
DOMDistiller
Firefox
BoilerPipe

100 200 300 400
Memory Footprint (MB)

20 50 100 500 1000 30006000 15000
Load Time (ms)

Figure 5: Performance characteristics of the different tree transducer strategies applied, showing the distribution of the key performance
metrics.

and the page is fully rendered). Since page content is replayed from
a local proxy, network bandwidth and latency variation impact is
minimized and the reported load time is a very optimistic figure,
especially for bigger pages with more sub-resources as illustrated
in Figure 4. Although network cost is still non-zero, the number
primarily reflects the time taken to process and render the entire
page.

We also recorded the number of resources fetched and the
amount of data downloaded during each test. Note that the amount
of data downloaded for all of the tree transduction strategies reflects
the size of the initial HTML rather than that of the transformed
document, as the transformation happens on the client and does
not result in additional network traffic. All measured transducers
discard the majority of page content (both in page content like text
and markup, but also referenced content like images, video files,
and JavaScript). Figures 2 and 3 provide an example of how tree
transduction techniques simplify page content.

For memory consumption, we measure the overall memory used
by the browser and its subprocesses. Google Chrome uses a multi-
process model, where each tab and frame may run in a separate
process and content of each page also affects what runs in the
main browser process. We note that our testing scenario does not
consider the case of multiple pages open simultaneously in the
same browsing session, as some of the resources are reused. The
reported number is therefore that of the entire browser rather than
the specific page alone, with some fixed browser runtime overheads.

Memory snapshots are collected with an explicit trigger after the
page load is complete with disabled-by-default-memory-infra
tracing category enabled. Despite including a level of fixed browser
memory costs, we still see average memory reduction of up to
2.4× in average or median cases. Overall, depending on the chosen
transducer, we show:

• average speedups ranging from 20× to 27×
• average bandwidth savings on the order of 84×
• number of requests is reduced 51× to 77×
• average memory reduction of 2.4×

4.4 Results: Privacy
SpeedReader achieves substantial privacy improvements, because
it applies the tree transduction step before rendering the document,

Table 6: Comparisons of the privacy implications of three popular
readability tree transducer strategies, as applied to the data set de-
scribed in Table 4. Values are given as Average and Median values.

Transducer # third-party # scripts Ads & Trackers
Avg Med Avg Med Avg Med

Default 117 63 83 51 63 24
ReadabilityJS 3 1 0 0 0 0
Dom Distiller 3 1 0 0 0 0
BoilerPipe 1 1 0 0 0 0

and thus before any requests to third parties have been initiated.
The privacy improvements gained by SpeedReader are threefold:
a reduction in third party requests, a reduction in script execution
(an often necessary, though not sufficient, part of fingerprinting
online), and a complete elimination of ad and tracking related re-
quests (as labeled by EasyList and EasyPrivacy). This last measure
is particularly important, since 92.8% of the 19,765 readable pages
in our data set loaded resources labeled as advertising or tracking
related by EasyList and EasyPrivacy [10, 11].

This subsection proceeds by both describing how we measured
the privacy improvements provided by SpeedReader, and the re-
sults of that measurement. These findings are presented in Table 6.

We measured the privacy gains provided by SpeedReader by
first generating reader mode versions of each of the 19,765 readable
URLs in our dataset, and counting the number of third parties, script
resources, and ad and tracking resources in each generated reader
mode page. We determined the number of ad and tracking resources
by applying EasyList and EasyPrivacywith an open-source ad-block
Node library [21] to each resource URL included in the page. We
then compared these measurements to the number of third-parties,
script units, and ad and tracking resource requests made in the
typical, non-reader mode rendering of each URL.

We found that all three of the evaluated tree transduction tech-
niques dramatically reduced the number of third parties communi-
cated with, and removed all script execution and ad and tracking
resource requests from the page. Put differently, SpeedReader is
able to achieve privacy improvements at least as good, and almost
certainly exceeding existing ad and tracking blockers, on readable
pages. This claim is based on the observation that ad and tracking
blockers do not achieve the same significant reduction in third party
communication and script execution as SpeedReader achieves.

8

5 DISCUSSION AND FUTUREWORK
5.1 Reader Mode as a Content Blocker
Most existing reader mode tools function to improve the presenta-
tion of page content for readers, by removing distracting content
and reformatting text for the browser user’s benefit. While the pop-
ularity of existing reader modes suggest that this is a beneficial use
case, the findings in this work suggest an additional use case for
reader modes, blocking advertising and tracking related content.

As discussed in Section 4.4, SpeedReader prevents all ad and
tracking related content from being fetched and rendered, as identi-
fied by EasyList and EasyPrivacy (Table 6). SpeedReader also loads
between 51 and 77 times fewer resources than typical page render-
ing and reader modes (Table 5), a non-trivial number of which are
likely also ad and tracking related. SpeedReader differs fundamen-
tally from existing content blocking strategies. Existing popular
tools, like uBlock Origin[20] and AdBlock Plus[15], aim to identify
malicious or undesirable content, and prevent it from being loaded
or displayed; all unlabeled content is treated as desirable and loaded
as normal. SpeedReader, and (at last conceptually) reader modes in
general, take the opposite approach. Reader modes try to identify
desirable content, and treat all other page content as undesirable,
or, at least, unneeded.

Our results suggest that the reader mode technique can achieve
ad and tracking blocking quality at least as well as existing content
blocking tools, but with dramatic performance improvements. We
expect that SpeedReader actually outperforms content blocking
tools (as content blockers suffer from false-negative problems, for
a variety of reasons), but lack a ground truth basis to evaluate
this claim further. We suggest evaluating the content blocking
capabilities of reader mode-like tools as a compelling area for future
work.

5.2 Comparison to Alternatives
SpeedReader exists among other systems that aim to improve the
user experience of viewing content on the web. While a full eval-
uation of these systems is beyond the scope of this work (mainly
because the compared systems have different goals and place dif-
ferent restrictions on users), we note them here for completeness.

AMP. Accelerated Mobile Pages (AMP)[17] is a system developed
by Google that improves website performance, in a number of ways.
Website authors opt-in to the AMP system by limiting their content
to a subset of HTML, JavaScript and CSS functionality, which allows
for optimized loading and execution. AMP pages are also served
from Google’s servers, which provide network level improvements.
AMP differs from SpeedReader and other reader mode systems
in that users only achieve performance improvements when site
authors design their pages for AMP; AMP offers no improvement
on existing, traditional websites.

Server-Assisted Rendering. Other browser vendors attempt to
improve the user experience by moving page, loading, rendering
execution from the client to a server. The client then fetches a ren-
dered version of the page from the server (generally either rendered
HTML or as a bitmap). The most popular such system is likely Ama-
zon Silk[1]. While there are significant performance upsides with
this thin-client technique, they come with significant downsides

too. First, user privacy is harmed, since the rendering-server must
manage and observe all client secrets when interacting with the
destination server on the client’s behalf. Additionally, while the
server may be able to improve the loading and rendering of the
page, its limited in the kinds of performance improvements it can
achieve. Server assisted rendering does not provide any of the pre-
sentation simplification or content blocking benefits provided by
SpeedReader.

5.3 SpeedReader Deployment Strategies
Always On. SpeedReader as described in this work is designed
to be “always on”, attempting to provide a readable presentation
of every page fetched. Although Safari Reader View also supports
an “always on” functionality, it lacks performance and privacy
enhancement provided by SpeedReader (Section 2). While this
decision maximizes the amount of privacy and performance im-
provements provided, it entails an overhead while loading each
page (Figure 4), which may not be worthwhile in some browsing
patterns such as interacting with application-like sites. Additionally,
there may be times when users want to maintain a page’s inter-
active functionality (e.g. JavaScript), even when SpeedReader has
determined that the page is readable. Ensuring the user’s ability to
disable SpeedReaderwould be important in such cases. The system
described in this work does not preclude such an option, but only
imagines changing the default page loading behavior.8

Tree Transduction Improvements. The three evaluated tech-
niques in Section 4, which are adapted from existing tools and
research, can provide a reader mode presentation with different
performance and privacy improvements. Users of SpeedReader
could select which tree transduction technique best suited their
needs. However, we expect that ML and similar techniques could
be applied to the tree transduction problem, to provide a reader
mode presentation that exceeds existing techniques. An improved
tree transduction algorithm would achieve equal or greater per-
formance and privacy improvements, while doing a better job of
maintaining the meaning and information of the extracted content.
We are currently exploring several options in this area, but have
found the problem large enough to constitute its own unique work.

6 RELATEDWORK
Content Extraction. The problem of removing boilerplate and ex-
tracting relevant content from a webpage has been extensively stud-
ied. Previous approaches primarily focused on the code structure,
visual representation and the link between the two. Lin et al. [29]
proposed a method to detect content blocks using <TABLE> tags and
calculate their entropy to distinguish the informative blocks from
the redundant ones. Laber et al. [27] proposed a heuristic method
for extracting textual sections and title from news articles using
<a>, <p> and <title> tags. Other studies have tried to detect useful
segments in a web page using structural and positional information.
Gupta et al. [18] introduced a DOM-based method to modify and
remove irrelevant DOM nodes to extract the main content. Their
8Current browsers and reader modes load all pages in the standard manner, and allow
the users to enable a reader mode presentation, while SpeedReader would load pages
in the optimized reader mode presentation by default, when possible, and allow users
to enable the standard loading behavior.

9

approach utilized filters to remove DOMnodes with advertisements,
and link and text ratio thresholds to remove unwanted table cells.
While the proposed rule-based method was simple, it had a poor
performance in link rich pages where the main content contained
many links. Weninger et al. [47] introduced a fast algorithm which
calculated the HTML tag ratio of each line to cluster and extract
text content. Their algorithm did not perform well on home pages
as well as it suffered from high recall and low precision. Cai et al. [8]
introduced a tag-free vision-based page segmentation algorithm
to segment a webpage and extract its web content structure using
the link between the visual layout and the content. Fan et al. [13]
introduced Article Clipper, a web content extractor that leveraged
visual cues in addition to HTML tags to extract non-textual and
textual content and detect multi-page articles. Their approach un-
derperformed in extracting captions which were links as well as
images and captions that were outside of main content.

Heuristic methods are limited by their lack of adaptability. Some
have proposed learning based methods to overcome this rigidness.
Pasternack and Roth [35] described a semi-supervised algorithm,
Maximum Subsequence Segmentation, which tokenized HTML into
list of tags, words and symbols, and attempted to classify each block
as either "in article" or "out of article" text. Kohlschütter et al. [24]
developed BoilerPipe to classify text elements using both structural
and text features, such as average word length and average sentence
length. Sun et al. [40] proposed Content Extraction via Text Density
(CETD) to extract the text content from pages using a variety of
text density measurements. Their method relied on the observation
that the amount of text in content sections is large, and the text
in boilerplate sections contains more noise and links. Sluban and
Grčar [38] introduced an unsupervised and language-independent
method for extracting content from streams of HTML pages, by
detecting commonalities in page structure. While their method
outperformed other open-source content extractor algorithms, it
suffered from high memory consumption and poor performance in
diverse and small HTML data set.

Wu et al. [48] proposed a machine learning model using DOM
tree node features such as position, area, font, text and tag properties
to select and group content related nodes and their children. In their
recent paper, Vogels et al. [43] presented an algorithm combining a
hidden markov model and a convolutional neural networks (CNNs).
Their model first preprocessed an HTML page into a Collapsed
DOM (CDOM) tree where each single child parent node was merged
with its child. CDOM was then segmented into blocks of main
content and boilerplate using sequence labeling of DOM leaves.
The features were then used to train two CNNs, obtain potentials
and finally find the optimal labeling. Their approach outperformed
previous studies on the CleanEval benchmark [3].

Web Complexity. While content extraction has attracted much
attention in the scientific literature, fewer studies are conducted to
understand website complexity and its impact on page load time
and user experience. Gibson et al. [14] analyzed webpage template
evolution using site-level template detection algorithms and found
that templates, with little raw content value, represented 40-50% of
the data on the Web and the rate continued to grow at a rate about
6% per year. Butkiewicz et al. [7] showed that modern websites,
regardless of their popularity, were complex and such complexity

could affect user experience. Moreover, their analysis demonstrated
that the number of loaded objects and servers could indicate page
load time, and both numbers were significant in News websites.

Performance and User Experience. While complexity of web-
pages can affect page load time, their visual complexity can impact
user experience. Harper et al.showed that visual complexity in web-
pages, defined as diversity, density, and positioning of the elements,
could increase cognitive load [19] and even have detrimental cogni-
tive and emotional impact on users [41]. In many websites, online
advertisements are the only source of income. Nonetheless, online
ads, especially intrusive ads, have usability consequences [6]. As
Pujol et al. [36] observed, 22% of the most active users of a major
European ISP use Adblock Plus. As a result, providing the main con-
tent in a clutter free page, such as Reader Mode, not only decreases
the complexity of a page, but also preserves privacy by limiting the
number of requests for third-party services and trackers [12, 25] as
well as improves user experience.

7 CONCLUSION
The modern web’s progress has led us to the point far beyond
Hypertext Markup for document discovery, to having full-fledged,
media-rich experiences and dynamic applications. With this growth
in capability, there has been a growth in page “bloat”, making pages
expensive to load, and bringing with it ubiquitous advertising and
tracking. In this work, we propose SpeedReader as an approach
broadening the applicability of “reader mode” browser features to
deliver huge improvements to the end-user browsing experience.

Unique among reader mode tools, SpeedReader determines if a
page is readable based only on the page’s initial HTML, before the
HTML is parsed and rendered, and before sub-resources are fetched.
Our classifier can classify within 2 ms and with 91% accuracy, which
makes it practical as an always-on part of the rendering pipeline to
transform all suitable pages at load time. We find that SpeedReader
is widely applicable, and can deliver performance and privacy im-
provements to 22% of pages on popular and unpopular websites, and
a larger proportion of pages linked to from online social networks
like Reddit (42%) and Twitter (31%). Since SpeedReader makes its
modifications before sub-resources are fetched, it uses 84× less
network than traditional page rendering (and current reader mode
techniques). This results in page load time improvements, important
in a range of scenarios from poor connectivity or low-end devices,
to expensive data connectivity or simply wanting a clean and sim-
ple interaction with primarily textual content. SpeedReader also
delivers page loading speedups of 20× - 27× and average memory
reduction of 2.4×, while maintaining a pleasant, reader mode style
user experience. Finally, when SpeedReader was applied to 19,765
readable webpages, it prevented 100% of advertising and tracking
related resources from being fetched (as labeled by EasyList and
EasyPrivacy).

8 ACKNOWLEDGEMENT
This research was supported by Brave Software. We would like to
thank David Temkin for his practical feedback and helpful com-
ments on the project. We also would like to thank anonymous
reviewers for their time and effort in reviewing this paper.

10

REFERENCES
[1] Amazon. [n. d.]. Amazon Silk Documentation. docs.aws.amazon.com/silk/index.

html
[2] Arc90. [n. d.]. Readability - An Arc90 Lab Experiment. http://ejucovy.github.io/

readability/
[3] Marco Baroni, Francis Chantree, Adam Kilgarriff, and Serge Sharoff. 2008.

Cleaneval: a Competition for Cleaning Web Pages.. In LREC.
[4] Alexander Borisov. [n. d.]. myHTML - Fast C/C++ HTML 5 Parser. Using threads.

https://github.com/lexborisov/myhtml
[5] Anna Bouch, Allan Kuchinsky, and Nina Bhatti. 2000. Quality is in the Eye of

the Beholder: Meeting Users’ Requirements for Internet Quality of Service. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’00). ACM, New York, NY, USA, 297–304. https://doi.org/10.1145/332040.332447

[6] Giorgio Brajnik and Silvia Gabrielli. 2010. A review of online advertising effects
on the user experience. International Journal of Human-Computer Interaction 26,
10 (2010), 971–997.

[7] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas Sekar. 2011. Understanding
Website Complexity: Measurements, Metrics, and Implications. In Proceedings of
the 2011 ACM SIGCOMMConference on Internet Measurement Conference (IMC ’11).
ACM, New York, NY, USA, 313–328. https://doi.org/10.1145/2068816.2068846

[8] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. 2003.
VIPS: a Vision-based Page Segmentation Algorithm. (November
2003), 28. https://www.microsoft.com/en-us/research/publication/
vips-a-vision-based-page-segmentation-algorithm/

[9] Mozilla Corporation. 2018. Readability.js. https://github.com/mozilla/readability
[10] EasyList. 2018. About EasyList. https://easylist.to/pages/about.html
[11] EasyList. 2018. EasyList Github repository. https://github.com/easylist/easylist
[12] Steven Englehardt andArvind Narayanan. 2016. Online Tracking: A 1-million-site

Measurement and Analysis. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’16). ACM, New York, NY, USA,
1388–1401. https://doi.org/10.1145/2976749.2978313

[13] Jian Fan, Ping Luo, Suk Hwan Lim, Sam Liu, Parag Joshi, and Jerry Liu. 2011.
Article Clipper: A System for Web Article Extraction. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’11). ACM, New York, NY, USA, 743–746. https://doi.org/10.1145/2020408.
2020525

[14] David Gibson, Kunal Punera, and Andrew Tomkins. 2005. The Volume and
Evolution of Web Page Templates. In Special Interest Tracks and Posters of the
14th International Conference on World Wide Web (WWW ’05). ACM, New York,
NY, USA, 830–839. https://doi.org/10.1145/1062745.1062763

[15] Eyeo GmbH. 2018. Adblock Plus. https://adblockplus.org/
[16] Utkarsh Goel, Moritz Steiner, Mike P Wittie, Martin Flack, and Stephen Ludin.

2017. Measuring What is Not Ours: A Tale of 3rd Party Performance. In In-
ternational Conference on Passive and Active Network Measurement. Springer,
142–155.

[17] Google. [n. d.]. Accelerated Mobile Pages Project. https://www.ampproject.org
[18] Suhit Gupta, Gail Kaiser, David Neistadt, and Peter Grimm. 2003. DOM-based

Content Extraction of HTML Documents. In Proceedings of the 12th International
Conference on World Wide Web (WWW ’03). ACM, New York, NY, USA, 207–214.
https://doi.org/10.1145/775152.775182

[19] Simon Harper, Eleni Michailidou, and Robert Stevens. 2009. Toward a Definition
of Visual Complexity As an Implicit Measure of Cognitive Load. ACM Trans.
Appl. Percept. 6, 2, Article 10 (March 2009), 18 pages. https://doi.org/10.1145/
1498700.1498704

[20] Raymond Hill. 2018. uBlock Origin - An efficient blocker for Chromium and
Firefox. Fast and lean. https://github.com/gorhill/uBlock

[21] Brave Software Inc. 2018. Brave Ad Block. https://github.com/brave/ad-block
[22] Google Inc. [n. d.]. Catapult - Web Page Replay. https://github.com/

catapult-project/catapult.git
[23] Google Inc. 2018. DOM Distiller. https://github.com/chromium/dom-distiller
[24] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. 2010. Boilerplate

Detection Using Shallow Text Features. In Proceedings of the Third ACM Interna-
tional Conference on Web Search and Data Mining (WSDM ’10). ACM, New York,
NY, USA, 441–450. https://doi.org/10.1145/1718487.1718542

[25] Balachander Krishnamurthy and Craig Wills. 2009. Privacy Diffusion on the Web:
A Longitudinal Perspective. In Proceedings of the 18th International Conference
on World Wide Web (WWW ’09). ACM, New York, NY, USA, 541–550. https:
//doi.org/10.1145/1526709.1526782

[26] Deepak Kumar, Zane Ma, Zakir Durumeric, Ariana Mirian, Joshua Mason,
J. Alex Halderman, and Michael Bailey. 2017. Security Challenges in an In-
creasingly Tangled Web. In Proceedings of the 26th International Conference
on World Wide Web (WWW ’17). International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, Switzerland, 677–684.
https://doi.org/10.1145/3038912.3052686

[27] Eduardo Sany Laber, Críston Pereira de Souza, Iam Vita Jabour, Evelin Car-
valho Freire de Amorim, Eduardo Teixeira Cardoso, Raúl Pierre Rentería, Lú-
cio Cunha Tinoco, and Caio Dias Valentim. 2009. A Fast and Simple Method for

Extracting Relevant Content from News Webpages. In Proceedings of the 18th
ACM Conference on Information and Knowledge Management (CIKM ’09). ACM,
New York, NY, USA, 1685–1688. https://doi.org/10.1145/1645953.1646204

[28] Timothy Libert. 2015. Exposing the Invisible Web: An Analysis of Third-Party
HTTP Requests on 1 Million Websites. International Journal of Communication 9,
0 (2015). https://ijoc.org/index.php/ijoc/article/view/3646

[29] Shian-Hua Lin and Jan-Ming Ho. 2002. Discovering Informative Content Blocks
from Web Documents. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’02). ACM, New York,
NY, USA, 588–593. https://doi.org/10.1145/775047.775134

[30] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian
Neuner, Martin Schmiedecker, and Edgar Weippl. 2017. Block me if you can: A
large-scale study of tracker-blocking tools. In Security and Privacy (EuroS&P),
2017 IEEE European Symposium on. IEEE, 319–333.

[31] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian
Neuner, Martin Schmiedecker, and Edgar Weippl. 2017. Block Me if You Can: A
Large-Scale Study of Tracker-Blocking Tools. Proceedings - 2nd IEEE European
Symposium on Security and Privacy, EuroS and P 2017 (2017), 319–333. https:
//doi.org/10.1109/EuroSP.2017.26

[32] mikesizz. [n. d.]. RedditList - Tracking the top 5000 subreddits. http://redditlist.
com/

[33] Thomas Nagele. 2015. Client-side performance profiling of JavaScript for web
applications. Master Thesis. Radboud University Nijmegen.

[34] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You Are What You Include: Large-scale Evaluation of Remote Javascript In-
clusions. In Proceedings of the 2012 ACM Conference on Computer and Com-
munications Security (CCS ’12). ACM, New York, NY, USA, 736–747. https:
//doi.org/10.1145/2382196.2382274

[35] Jeff Pasternack and Dan Roth. 2009. Extracting Article Text from the Web with
Maximum Subsequence Segmentation. In Proceedings of the 18th International
Conference on World Wide Web (WWW ’09). ACM, New York, NY, USA, 971–980.
https://doi.org/10.1145/1526709.1526840

[36] Enric Pujol, Oliver Hohlfeld, and Anja Feldmann. 2015. Annoyed Users: Ads
and Ad-Block Usage in the Wild. In Proceedings of the 2015 Internet Measurement
Conference (IMC ’15). ACM, New York, NY, USA, 93–106. https://doi.org/10.1145/
2815675.2815705

[37] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn. 2010. JSMeter:
Comparing the Behavior of JavaScript Benchmarks with Real Web Applications.
In Proceedings of the 2010 USENIX Conference on Web Application Development
(WebApps’10). USENIX Association, Berkeley, CA, USA, 3–3. http://dl.acm.org/
citation.cfm?id=1863166.1863169

[38] Borut Sluban and Miha Grčar. 2013. URL tree: efficient unsupervised content
extraction from streams of web documents. In Proceedings of the 22nd ACM
international conference on Conference on information & knowledge manage-
ment (CIKM ’13). ACM, New York, NY, USA, 2267–2272. https://doi.org/10.1145/
2505515.2505654

[39] Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. 2016. Browser
Feature Usage on theModernWeb. In Proceedings of the 2016 Internet Measurement
Conference (IMC ’16). ACM, New York, NY, USA, 97–110. https://doi.org/10.1145/
2987443.2987466

[40] Fei Sun, Dandan Song, and Lejian Liao. 2011. DOM Based Content Extraction via
Text Density. In Proceedings of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’11). ACM, New York,
NY, USA, 245–254. https://doi.org/10.1145/2009916.2009952

[41] Alexandre N. Tuch, Javier A. Bargas-Avila, Klaus Opwis, and Frank H. Wilhelm.
2009. Visual complexity of websites: Effects on users’ experience, physiology,
performance, and memory. International Journal of Human-Computer Studies 67,
9 (2009), 703 – 715. https://doi.org/10.1016/j.ijhcs.2009.04.002

[42] Antoine Vastel, Peter Snyder, and Benjamin Livshits. 2018. Who Filters the
Filters: Understanding the Growth, Usefulness and Efficiency of Crowdsourced
Ad Blocking. (2018). http://arxiv.org/abs/1810.09160

[43] Thijs Vogels, Octavian-Eugen Ganea, and Carsten Eickhoff. 2018. Web2Text:
Deep Structured Boilerplate Removal. In European Conference on Information
Retrieval. Springer, 167–179.

[44] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2013. Demystifying Page Load Performance with WProf. In Presented
as part of the 10th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 13). USENIX, Lombard, IL, 473–485. https://www.usenix.org/
conference/nsdi13/technical-sessions/presentation/wang_xiao

[45] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016. Speeding
up Web Page Loads with Shandian. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16). USENIX Association, Santa Clara,
CA, 109–122. https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/wang

[46] Zhiheng Wang. 2012. Navigation Timing. W3C Recommendation. W3C.
http://www.w3.org/TR/2012/REC-navigation-timing-20121217/.

11

docs.aws.amazon.com/silk/index.html
docs.aws.amazon.com/silk/index.html
http://ejucovy.github.io/readability/
http://ejucovy.github.io/readability/
https://github.com/lexborisov/myhtml
https://doi.org/10.1145/332040.332447
https://doi.org/10.1145/2068816.2068846
https://www.microsoft.com/en-us/research/publication/vips-a-vision-based-page-segmentation-algorithm/
https://www.microsoft.com/en-us/research/publication/vips-a-vision-based-page-segmentation-algorithm/
https://github.com/mozilla/readability
https://easylist.to/pages/about.html
https://github.com/easylist/easylist
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.1145/2020408.2020525
https://doi.org/10.1145/2020408.2020525
https://doi.org/10.1145/1062745.1062763
https://adblockplus.org/
https://www.ampproject.org
https://doi.org/10.1145/775152.775182
https://doi.org/10.1145/1498700.1498704
https://doi.org/10.1145/1498700.1498704
https://github.com/gorhill/uBlock
https://github.com/brave/ad-block
https://github.com/catapult-project/catapult.git
https://github.com/catapult-project/catapult.git
https://github.com/chromium/dom-distiller
https://doi.org/10.1145/1718487.1718542
https://doi.org/10.1145/1526709.1526782
https://doi.org/10.1145/1526709.1526782
https://doi.org/10.1145/3038912.3052686
https://doi.org/10.1145/1645953.1646204
https://ijoc.org/index.php/ijoc/article/view/3646
https://doi.org/10.1145/775047.775134
https://doi.org/10.1109/EuroSP.2017.26
https://doi.org/10.1109/EuroSP.2017.26
http://redditlist.com/
http://redditlist.com/
https://doi.org/10.1145/2382196.2382274
https://doi.org/10.1145/2382196.2382274
https://doi.org/10.1145/1526709.1526840
https://doi.org/10.1145/2815675.2815705
https://doi.org/10.1145/2815675.2815705
http://dl.acm.org/citation.cfm?id=1863166.1863169
http://dl.acm.org/citation.cfm?id=1863166.1863169
https://doi.org/10.1145/2505515.2505654
https://doi.org/10.1145/2505515.2505654
https://doi.org/10.1145/2987443.2987466
https://doi.org/10.1145/2987443.2987466
https://doi.org/10.1145/2009916.2009952
https://doi.org/10.1016/j.ijhcs.2009.04.002
http://arxiv.org/abs/1810.09160
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/wang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/wang

[47] Tim Weninger, William H. Hsu, and Jiawei Han. 2010. CETR: Content Extraction
via Tag Ratios. In Proceedings of the 19th International Conference on World Wide
Web (WWW ’10). ACM, New York, NY, USA, 971–980. https://doi.org/10.1145/
1772690.1772789

[48] ShanchanWu, Jerry Liu, and Jian Fan. 2015. AutomaticWebContent Extraction by
Combination of Learning and Grouping. In Proceedings of the 24th International
Conference on World Wide Web (WWW ’15). International World Wide Web
Conferences Steering Committee, Republic and Canton of Geneva, Switzerland,
1264–1274. https://doi.org/10.1145/2736277.2741659

12

https://doi.org/10.1145/1772690.1772789
https://doi.org/10.1145/1772690.1772789
https://doi.org/10.1145/2736277.2741659

	Abstract
	1 Introduction
	2 Background
	2.1 Terminology
	2.2 Existing Reader Modes
	2.3 Comparison to SpeedReader

	3 Page Classification
	3.1 Classifier Design
	3.2 Classifier Accuracy
	3.3 Classifier Usability
	3.4 Applicability to the Web
	3.5 Conclusion

	4 Page Tree transduction
	4.1 Limitations and Bounds
	4.2 Evaluation Methodology
	4.3 Results: Performance
	4.4 Results: Privacy

	5 Discussion and Future Work
	5.1 Reader Mode as a Content Blocker
	5.2 Comparison to Alternatives
	5.3 SpeedReader Deployment Strategies

	6 Related Work
	7 Conclusion
	8 acknowledgement
	References

