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Abstract. We design FrodoPIR — a highly configurable, stateful, single-
server Private Information Retrieval (PIR) scheme that involves an of-
fline phase that is completely client-independent. Coupled with small
online overheads, it leads to much smaller amortized financial costs on
the server-side than previous approaches. In terms of performance for a
database of 1 million 1KB elements, FrodoPIR requires < 1 second for
responding to a client query, has a server response size blow-up factor
of < 3.6×, and financial costs are ∼ $1 for answering 100, 000 client
queries. Our experimental analysis is built upon a simple, non-optimized
Rust implementation, illustrating that FrodoPIR is eminently suitable for
large practical deployments.

1 Introduction

A Private Information Retrieval (PIR) scheme provides the ability for clients to
retrieve items from an online database, without revealing anything about their
queries to the untrusted host server(s). Applications of practical PIR schemes
include: anonymous communication [6, 54], anonymous media streaming [43],
privacy-preserving ad-delivery [42, 62, 56], private location discovery [34], pri-
vate contact discovery [14], password-checking [3], and SafeBrowsing [48]. PIR
schemes are split into those that are information-theoretically secure, but require
the database to be shared between multiple non-colluding servers [4, 24, 8, 10,
28, 9, 11, 67, 33, 32, 26, 37, 65, 52]; and those that are computationally-secure
against a single untrusted server [3, 28, 5, 19, 22, 35, 49, 50, 1, 58, 59, 55, 53].

Multi-server PIR constructions are typically much more efficient than single-
server schemes. However, finding non-colluding servers to jointly fulfill the PIR
functionality is unrealistic in many practical scenarios. To avoid such problems,
developing practical single-server PIR schemes is a desirable goal. The most
efficient single-server PIR schemes are based on fully homomorphic encryption
(FHE), with security derived from the ring learning with errors (RLWE) assump-
tion [1, 5, 55, 3, 58, 53]. Unfortunately, these schemes still incur unmanageable
computational, bandwidth, and consequent financial overheads for answering
client queries on standard, cloud-based infrastructure.

To drive down online and financial costs, a recent line of work of single-
server PIR moves large proportions of the expensive online computation and
communication to an offline phase [55, 59, 27] (a technique that also applies in



the two-server model [28, 52]). In this model, the client and server prepare an
offline internal state to be used for making online queries. Such schemes are re-
ferred to as offline-online or stateful, as opposed to online-only or stateless. Such
works [55, 59, 27] have focused on developing PIR schemes with efficient online
phases. The recent work of Corrigan-Gibbs et al. [27], for example, produces a
single-server PIR scheme with sublinear efficiency costs.

A key difficulty that has gone unsolved is that either the computation or
communication costs induced during the offline phase must scale linearly in the
number of clients that will make queries [55, 27, 59]. Moreover, each scheme
requires each individual client to make large numbers of queries (e.g.

√
m for m

DB elements) to ensure that the amortized costs remain sublinear. Ultimately,
this still results in significant financial costs for any server that plans to run a
PIR service in standard cloud-based infrastructure, that will answer queries from
large numbers of clients. As a consequence, single-server PIR remains unusable
in many real-world applications.

Our results. We build FrodoPIR: a stateful PIR scheme that is built directly
upon the learning with errors (LWE) problem only, rather than using RLWE and
FHE-based technologies. Similarly to FrodoKEM with respect to lattice-based
key exchange [15], we show that — counter to accepted intuition — eschewing
ring lattice structures can lead to a flexible, practically efficient PIR scheme. The
main benefit of FrodoPIR is that the offline phase of the protocol is performed
by the server alone, completely independent of the number of clients or queries
that will be made. This results in low amortized computation overheads and an
offline client download size that is a tiny fraction of the entire server database.

Our results highlight that the current bottleneck for deploying practical state-
ful PIR schemes is heavily related to the per-client scalability of the offline
preprocessing phase. Previous schemes have optimized primarily for per-client
asymptotics, which we show do not necessarily translate into financially cheap
real-world systems. To this end, FrodoPIR represents an initial exploration in de-
veloping stateful PIR schemes that are suitable for large, real-world deployments,
where lowering financial costs for server-side operators is of paramount impor-
tance. On top of this, FrodoPIR is significantly simpler than previous schemes,
making no use of FHE techniques and requiring only modular arithmetic that
can be implemented using standard 32-bit unsigned integer instructions.

Our formal contributions are as follows.

1. A stateful single-server PIR scheme, known as FrodoPIR, with security de-
rived from LWE.

2. A simple, open-source Rust implementation — containing only a few hundred
lines of code.1

3. Experimental analysis that illustrates that FrodoPIR is cheaper to run in
large multi-client deployments than all previous single-server PIR schemes.

4. Detailed analysis of various configuration trade-offs and optimizations for
FrodoPIR.

1 https://github.com/brave-experiments/frodo-pir
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2 Background

2.1 Overview of Prior Approaches

PIR was first introduced as a cryptographic primitive by Chor, Gilboa, Kushile-
vitz, and Sudan [26]. Information-theoretic PIR (ITPIR) sees the client interact
with multiple non-colluding servers, that each have access to some form of the
same database, and the client combines the responses from each server locally [4,
24, 8, 10, 28, 9, 11, 67, 33, 32, 37, 65, 52]. Computationally-secure PIR (cPIR), on
the contrary, relies only on a single-server, and provides computational security
based on cryptographic assumptions [3, 28, 5, 19, 22, 35, 49, 50, 1, 58, 59, 55].
While ITPIR schemes are more efficient, real-world systems that provide non-
collusion guarantees prove very hard to devise in practice. Thus, we focus on
cPIR henceforth.

Stateless PIR. Initial constructions of PIR schemes followed the framework of
Kushilevitz and Ostrowsky [49], using additively homomorphic encryption (from
number-theoretic assumptions) for hiding the client query [19, 22, 35, 50]. Such
schemes are known as online-only or stateless, since the client does not have
to store any information in order to launch queries. Stateless single-server PIR
schemes of this nature have the following underlying structure.

– A client that wishes to learn the ith DB element DB[i], creates a query vector
v of m additively homomorphic ciphertexts, where v[i] encrypts 1 and all
others encrypt 0.

– The server responds with a vector w, where w[j] = v[j] ∗ DB[j] (j ∈ [m], ∗
denotes scalar multiplication).

– The client decrypts w[i] and learns DB[i].

Sion and Carbunar showed that such schemes actually perform much worse
than simply having the client download the entire server database (DB), when
the network bandwidth is just a few hundred Kbps [63]. This is a result of
performing O(m) expensive arithmetic operations (modular exponentiations or
multiplications) for every client query.

The results of [63] stood as a reference point for nearly a decade, until
Aguilar-Melchor et al. [1] used lattice-based cryptography (inherently faster than
number-theoretic approaches) to construct efficient single-server PIR. In their
XPIR scheme server computation time is approximately > 5 seconds for a DB
with m = 220 elements, even with the aforementioned asymptotic overheads.
Accordingly, bandwidth requirements for the client query are 18MB, and 590KB
for the server response. Various schemes both concurrently and since have used
RLWE-based FHE to propose similar schemes or optimizations of these meth-
ods, such as [31, 5, 58, 3, 55, 53]. In particular, the works of [5, 55, 3, 58] exhibit
various optimizations that transform the client query and server database to
reduce the size of the query and server response (to around 64KB and 128KB,
respectively), whilst maintaining similar computational costs.
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Stateful PIR. Unfortunately, stateless cPIR schemes still require computational
overheads that are difficult to justify in a large-scale deployment. For exam-
ple, since it takes around 6.5 seconds to respond to a single client query for a
database of 1 million entries [5], such approaches are unlikely to scale for large
databases or situations that require timely responses. More recent work has ob-
served that faster online computation can be achieved by moving expensive,
query-independent computation to an initial offline phase [59, 55, 28, 27]. This
allows reducing the online costs, as well as amortizing the costs of the offline
phase across a number of client queries.

The scheme of Patel et al., PSIR [59], enjoys a very fast online phase (less
than a second for processing queries on one million-entry database [55]), though
the scheme relies on an offline phase that requires the client to download the
entire server database — violating the PIR efficiency criterion (Definition 5).
The scheme of Mughees et al., Stateful OnionPIR (henceforth SOnionPIR) [55],
provides a concretely cheaper approach (from a financial perspective), but at the
cost of large computational overheads during the offline phase that is executed
as a protocol between each client and the server. More troubling from a financial
perspective, these costs scale linearly in the global number of client queries that
are launched. While the single-server scheme of Corrigan-Gibbs and Kogan [28]
has similar issues as SOnionPIR, the very recent work of Corrigan-Gibbs et
al. [27] construct a PIR scheme (henceforth CHKPIR) where all (amortized)
asymptotic complexities are sublinear in the number of DB elements, where
previous schemes still requiredO(m) (symmetric) online operations. This reduces
further the online costs, but the costs of the offline phase are very similar to
the previous works of [59, 55]. In summary, the expensive offline phase in each
scheme — that only amortizes per a single client’s queries — quickly becomes
the main driver of the server-side costs.

The general idea behind each of [59, 55, 27] is that each client and the server
cooperatively run a private batch sum retrieval protocol that samples c random
subsets S1, . . . , Sc of elements DB, and computes the sum si of all of the elements
in each Si and provides it to the client. During the online phase, the client that
wants to query for the element ej = DB[j] picks the first t ∈ [c], where ej /∈ St.
They then construct a partition P = (P1, . . . , Pk) of the indices of DB, where
Pj = S, and send a succinct description of this partition to the server. The
server expands each partition into the set of sums sP1

, . . . , sPk . The client uses
an underlying single-server PIR scheme to learn the sum sPj , and, finally, outputs
sPj − st to learn ej .

The PSIR scheme implements the private batch sum retrieval protocol by
streaming the entire database to the client, while the SOnionPIR and CHKPIR
schemes both involve the client specifying their random subsets as FHE cipher-
texts, and having the server construct each of the sums using homomorphic
properties. When instantiating the underlying single-server PIR scheme during
the online phase using FHE-based PIR (such as SealPIR, or stateless Onion-
PIR), it has been shown that these changes result in a much more efficient on-
line phase and significantly smaller server costs, when compared with online-only

4



schemes [59, 55]. Consequently, we focus on these stateful single-server schemes
from now on.

Other privacy-preserving data access primitives. Oblivious RAM (ORAM) pro-
vides data access pattern privacy for client queries to a server database [39, 40].
This problem is related to PIR, but provides privacy also for the server database:
the client learns the queried DB element and nothing more. While recent ORAM
schemes enjoy sublinear computation and communication [23, 30, 61, 64], none
are inherently multi-client and this leads to very expensive real-world overheads.

Hamlin et al. present Private Anonymous Data Access (PANDA) [44], based
on a symmetric-key formulation of PIR known as doubly-efficient PIR [12, 17,
21]. Doubly-efficient PIR schemes are similar to stateful schemes, where there
is an initial phase that preprocesses the server database, but the online phase
is totally stateless. Unfortunately, symmetric-key doubly-efficient PIR is inher-
ently not multi-client. Public-key instantiations use multiple-servers [12], or are
based on expensive cryptographic obfuscation [17]. Batch PIR [46, 45, 7, 51]
uses batch codes to achieve sublinear amortized efficiency by allowing clients
to retrieve multiple items at once. Unfortunately, such schemes do not provide
savings in settings where queries are made adaptively — i.e. based on the results
of previous queries — which is assumed functionality in standard database and
web browsing applications. In this work, we focus on developing PIR schemes
that can efficiently handle adaptive client queries.

2.2 Limitations of Existing Stateful PIR Schemes

Expensive preprocessing. The key limitation of SOnionPIR and CHKPIR is the
computational cost of the private batch sum retrieval protocol that takes place
during the offline phase. This protocol must be invoked per-client, and involves
at least O(m) server-side operations and O(m) communication (m = |DB|).
These costs are amortized across the number of queries c launched but, even
after amortization, the computational costs remain large. For a DB of 220 1KB
elements, the offline phase of SOnionPIR takes 25 seconds per client query.2 For
large multi-client systems, the potential for amortization diminishes and these
costs quickly become prohibitive.

On the other hand, in PSIR clients must simply download the entire server
database before only storing O(c) data. This results in multiple issues. First,
as shown in [55], for large numbers of clients the download cost becomes pro-
hibitively large from a financial perspective, and will continue growing for larger
databases and items [55]. Second, the PSIR approach is unable to satisfy the
fundamental efficiency goal required of PIR schemes (Definition 5).

High online bandwidth consumption. As a result of using FHE-based single-
server PIR during the online phase, both SOnionPIR and PSIR have online
server response sizes that are relatively very large compared to the size of the

2 While CHKPIR has not been implemented, the offline phase is very similar and thus
will incur similarly large computational overheads.
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queried DB element. For example, for 1KB data elements, the response blow-
up in SOnionPIR is 128×, while in PSIR it is 320×. The work of CHKPIR
uses similar underlying primitives and thus results in similar communication
overheads.

Practical security parameters. PSIR and SOnionPIR provide 115 and 111 bits
of security, respectively [55, 59] using the primal-USVP cost model for estimat-
ing the hardness of cryptographic lattices, as shown in [2]. Achieving 128 bits of
security can be important in cases where cryptographic tools must satisfy regu-
latory compliance checks. Increasing the concrete security parameters of either
scheme would require modifying the LWE parameters that are used which, in
turn, will significantly impact the efficiency of both schemes.

Simple, available implementations. No stateful PIR scheme has an implementa-
tion. More alarmingly, no previous scheme implements their stateful PIR scheme
as part of their experimental analysis. This means that the computational over-
heads of running existing schemes are either extrapolated from stateless PIR
implementations, or remain unavailable. Having simple, small, and available im-
plementations is a significant advantage when it comes to assessing the efficiency
and security guarantees that are provided, during security and scientific auditing
processes.

2.3 Overview of FrodoPIR

A diagrammatic overview of the FrodoPIR approach is given in Figure 1, and
involves the following steps.

1. In the offline phase, the server interprets their own database as a matrix,
applies a compression function to said matrix and makes the results available
as global public parameters. This compression function shrinks the size of
the database by a factor of approximately m/λ, where λ is the security
parameter and m is the number of database elements.3

2. The client downloads the public parameters, and can compute c sets of pre-
processed query parameters.

3. In the online phase, the client uses a single set of preprocessed query param-
eters to produce an “encrypted” query vector, which is sent to the server.

4. The server responds to the query by multiplying the vector with their database
matrix.

5. The client returns the result by “decrypting” the response using their pre-
processed query parameters.

The security of the system relies on the decisional LWE problem: each client
query is a noisy vector that appears uniformly random to the server. Further-
more, security holds up to a global number of client queries that the server
witnesses. When this is reached, the server simply reruns the compression func-
tion using newly sampled randomness, and the clients download and process the
new parameters.

3 Thus, the size of the parameters is no longer linear in the size of the database.
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c̃

c
− DB[i]Round ≈

(5) Client Output

Fig. 1. An overview of FrodoPIR. In (1), the server compresses their database DB (repre-
sented as a matrix) into M, via multiplication with the global matrix A that is derived
randomly from a public seed µ. The client downloads (µ,M), and in (2) they preprocess
a query and store (b,c), note that b is an LWE sample and is thus randomly distributed.
In the online phase, in (3), the client creates their query by adding an indicator value

x to the ith vector entry of b̃. In (4), the server multiplies the client query vector with
their DB matrix and return the result, c̃. Finally, in (5), the client subtracts c from
c̃ — rounding the result to remove any error terms — and learns the ith row of DB.
The full scheme is given in Section 4.

While the ideas behind FrodoPIR are fundamentally similar to previous RLWE-
based PIR schemes, the key differentiating factor is that it uses a secure, client-
independent preprocessing phase. Moreover, the total client download is much
smaller than schemes that involve streaming the entire server database. This
trade-off results in a scheme that is significantly cheaper than all previous ap-
proaches, including those that achieve sublinear computation and communica-
tion complexities such as [27].

The main limitation of the FrodoPIR approach is that the online client queries
are linear in the size of the database, whereas previous schemes manage to reduce
the size of such queries. Fortunately, we show that FrodoPIR is highly configurable
and that we are able to reduce client query sizes (as well as server-side online
computation) at the cost of increasing the client download size (see Section 5.4
for more details). We provide a functionality, efficiency, and coarse-level finan-
cial comparison between FrodoPIR and previous stateless/stateful PIR schemes
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Approach
Security
assumptions

Client costs Server costs

Communication Computation
Storage

Communication Computation
Financial

Offline Online Offline Online Offline Online Offline Online

Stateless [5, 55, 3] RLWE — m — m — — 1 — m $5.2× 10−3

PSIR [59] RLWE — 1 m
√
m

√
m |DB|/

√
m 1 — m $8.8× 10−5

SOnionPIR [55] RLWE
√
m 1 k ·

√
m k

√
m

√
m 1

√
m m $6.4× 10−4

CHKPIR [27] RLWE
√
m

√
m

√
m

√
m

√
m

√
m 1

√
m

√
m ∼ $8.8× 10−5†

FrodoPIR LWE — m m 1 λ λ ·m−1/2 1
√
m/C m $(1.9/C × 10−2 + 1.3× 10−5)

Fig. 2. Asymptotic comparison (ignoring logarithmic factors) of practical approaches for
realising single-server PIR with adaptive queries (i.e. not including batch PIR schemes).
All costs are amortized according to C clients that launch c =

√
m queries (m = |DB|

is the total number of elements in the server database). Communication costs relate to
the amount of data that is sent to the party. The financial costs are given relative to a
database containing 220 1KB elements, are amortized per-query and per-client, and are
calculated assuming a server that operates the same AWS EC2 architecture specified
in Section 6. †The costs of CHKPIR are assumed to be zero for the online phase, and
are thus completely dominated by the offline phase, which can be implemented using
techniques from [59, 55, 27].

in Figure 2. We illustrate how amortization of offline computation across all
client leads to significant efficiency advantages in the experimental analysis of
Section 6.

3 Preliminaries

3.1 Notation

We denote vectors and matrices in lower- and upper-case bold-face, respectively.
All vectors v are assumed to be in column orientation, and we write vT to
denote the same vector in row orientation. For a set of vectors x1, . . . ,x`, we
write [x1 ‖ · · · ‖x`] to denote the matrix with the ith column set to equal xi for
i ∈ [`].

Let bxe ∈ Z denote rounding x ∈ R to the nearest integer, rounding down
in case of a tie. Likewise, we use dxe to indicate explicitly rounding x ∈ R to
the next highest integer. For x ∈ Zmq , we write bxep to denote the computation
of bp/q · xe, where the rounding is applied to each entry of x individually. For
some set X , we write x←$X to denote that x is sampled from X uniformly, and
we write x←$ (X )m to denote sampling an m-dimensional vector, with each
entry sampled uniformly from X . We write log(x) to denote taking the base-
2 logarithm of x. We use λ to denote the security parameter throughout, and
say that an algorithm A is PPT if it runs in probabilistic polynomial-time with
respect to λ.

3.2 Mathematical Preliminaries

We use the learning with errors (LWE) problem in its decisional version, which
is equivalent to its search version as proven by Regev [60].
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Definition 1. (Decisional LWE problem) Let χ be some distribution, and let
q, n,m > 0 depend on λ. The decision LWE problem (LWEq,n,m,χ) is to dis-
tinguish between:

(A, sT ·A + eT ) ∈ Zn×mq × Zmq , (1)

(A,u) ∈ Zn×mq × Zmq , (2)

where A←$Zn×mq , sT ← (χ)n, eT ← (χ)m, and u←$Zmq .

Evidence that the LWEq,n,m,χ problem is hard to solve for appropriate choices
of χ — for example, uniform binary or small Gaussian distributions — and
for both classical and quantum adversaries follows via reduction from standard
lattice problems [60] (as hard as worst case problems on n-dimmesional lattices).
The following corollary follows from the work of Brakerski et al. [18], and states
that decisional LWEq,n,m,χ remains hard when χ is the uniform distribution over
ternary values (i.e. {0,±1}).

Corollary 1. (Ternary LWE [18]) The LWEq,n,m,χ problem is hard to solve when
χ is the uniform distribution on {−1, 0, 1} (i.e. the uniform ternary distribution).

In Definition 2 we give a variant of LWEq,n,m,χ known as the Matrix LWE
problem (denoted by MatLWEq,n,m,χ,`). Corollary 2 shows that MatLWEq,n,m,χ,`
is hard to solve, with only polynomial security loss compared with LWEq,n,m,χ [15].

Definition 2. (Decisional Matrix LWE problem [15]) Let χ be some distribu-
tion, and let q, n,m, ` > 0 depend on λ. The decisional Matrix LWE problem
(MatLWEq,n,m,χ,`) is to distinguish between:

(A,S ·A + E) ∈ Zn×mq × Z`×mq , (3)

(A,U) ∈ Zn×mq × Z`×mq , (4)

where A←$Zn×mq , S ← (χ)`×n, E ← (χ)`×m, and U ←$Z`×mq .

Corollary 2. (Hardness of MatLWEq,n,m,χ,` [15]) Let A be a PPT adversary
against MatLWEq,n,m,χ,` with advantage ε, then we can construct a PPT ad-
versary B against LWEq,n,m,χ with advantage ε/`.

We now state the following as a corollary of the central limit theorem [57], to
provide an upper bound on the size of sums of elements sampled from uniform
ternary distributions.

Corollary 3. (Bounds on uniform ternary sums) For sufficiently large m, the
sum of m samples taken from the uniform distribution over ternary values (i.e.
{−1, 0, 1}) is bounded by 4

√
m with all but negligible probability.
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3.3 Stateful Private Information Retrieval

As discussed, in this work, we will consider stateful PIR schemes, where the
PIR interactions are split into a query-independent offline phase and a query-
dependent online phase [59]. A stateful PIR scheme consists of an offline and an
online phase, which are defined as follows.

Offline phase.

– ssetup(1λ): An algorithm run by the server that outputs some initialization
parameters ip.

– cinit(ip): A client initialization algorithm run on parameters ip. Outputs a
message msg to be sent to the server during the offline phase.

– spreproc(ip,DB,msg): A server preprocessing algorithm run on ip, the server
database DB, and client message msg. Outputs a set of public parameters
pp to be downloaded by the client.

– cpreproc(ip, pp): A client preprocessing algorithm run on the server-generated
public parameters (ip, pp), that outputs a state st.

Stateful PIR schemes that omit the cinit algorithm are said to have client-
independent preprocessing phases.

Online phase.

– query(st, i): An algorithm run by the client that generates a PIR query q for
the item in the ith index of the server database.

– respond(DB, q): A server algorithm that outputs a response r to be returned
to the client.

– process(st, r): A client algorithm that takes the sever response r, and outputs
a database element x.

3.4 PIR requirements

Stateful PIR schemes must guarantee the following.

Correctness. The following correctness definition ensures that clients receive the
correct response with overwhelming probability when interacting with an honest
server.

Definition 3. (Correctness) Let DB be the server database, let i be the index that
the client seeks to query during the online phase, and let DB[i] be the ith entry
of DB. We say a PIR scheme is correct if the following inequality is satisfied.

Pr

x = DB[i]

∣∣∣∣∣∣∣∣
ip←ssetup(1λ)
pp←spreproc(ip,DB,cinit(ip))
st←cpreproc(ip,pp)
q←query(st,i)
r←respond(DB,q)
x←process(st,r)

 > 1− negl(λ)

Security. We use the standard definition of security in enforcing the indistin-
guishability of client queries.
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Definition 4. (1-query indistinguishability) Let DB be the server database. Gen-
erate the server public parameters by running ip ← ssetup(1λ) and subsequently
pp ← spreproc(ip,DB, cinit(ip)), and let st ← cpreproc(ip, pp) be the client state.
We say that a PIR scheme is secure if, for any PPT adversary A specifying
indices i0, i1 that is given qb ← query(st, ib) for b←$ {0, 1}, then A has negligible
probability in correctly guessing b.

The above definition can be expanded to specify `-query indistinguishability,
in other words that two sets of size ` of client queries are indistinguishable from
each other [59].

Efficiency. PIR schemes require a communication overhead smaller than the
solution of having clients download the entire server database. In the stateful
PIR case, it should hold when amortizing costs over the number of client queries.

Definition 5. (Efficiency) For a single client launching c queries, a PIR scheme
is efficient if the total client download communication overhead is smaller than
|DB|/c.

For stateful schemes, the total client download cost is calculated using the
equation: comms(offline) + c · comms(online).

4 Our Scheme

We now describe the FrodoPIR scheme, writing FPIR for short.

4.1 Cryptographic Setup

Recall that S is the server holding the database DB that each client attempts to
learn entries from. The DB is an array of m elements, each made up of w bits.
Each entry is associated with the index i that corresponds to its position in the
array. For now, we will assume that the client knows which index it would like
to query during the online phase of the protocol.4 We assume that there are C
clients that will each launch a maximum of c queries against DB. Regarding the
LWE instantiation that is used: let n and q be the LWE dimension and modulus,
respectively; let 0 < ρ < q; let χ be the uniform distribution over {−1, 0, 1}; and
let λ be the concrete security parameter. Finally, we use PRG(µ, x, y, q) to denote
a pseudorandom generator that expands a seed µ←$ {0, 1}λ into a matrix in
Zx×yq .

4.2 Preprocessing Phase

We first describe the offline phase which occurs before the client makes any
queries to the server. Note that cinit is not required in FrodoPIR, and thus we
do not define it.

4 Section 7 discusses options for mapping string-based queries to indices.
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Server setup (FPIR.ssetup). The server constructs their database containing m
elements, and samples a seed µ ∈ {0, 1}λ.

Server preprocessing (FPIR.spreproc). The server derives a matrix A← PRG(µ, n,m, q),
where A ∈ Zn×mq . It then runs D ← parse(DB, ρ), where parse encodes the DB
into a matrix D ∈ Zm×ωρ , and where ω = dw/ρe.5 The server then stores D.

To generate public parameters, the server runs M ← A ·D, and then pub-
lishes the pair (µ,M) ∈ {0, 1}λ × Zn×ωq to a public repository accessible by
clients.

Client preprocessing (FPIR.cpreproc). Each client downloads (µ,M) from the
public repository, and runs A ← PRG(µ, n,m, q). The client then samples c
vectors sj ← (χ)n and ej ← (χ)m. Finally, it computes bj ← sj

T ·A+ej
T ∈ Zmq

and cj ← sj
T ·M ∈ Zωq , for each j ∈ [c], and stores the pairs internally as the

set X = (bj , cj)j∈[c].

4.3 Online Phase

Client query generation (FPIR.query). For the index i that the client wishes to
query, the client generates a vector fi = (0, . . . , 0, q/ρ, 0, . . . , 0), i.e. the all-zero
vector except where fi[i] = q/ρ. The client then pops a pair (b, c) from the

internal storage X that it maintains, and computes b̃ ← b + fi, and sends b̃ to
the server.

Server response (FPIR.respond). The server receives b̃ from the client, and re-

sponds with c̃← b̃T ·D ∈ Zωq .

Client postprocessing (FPIR.process). The client receives c̃, and outputs x ←
bc̃− ceρ.

4.4 Correctness

The output of the client postprocessing phase is x ← bc̃ − ceρ. Expanding the
right-hand side of the equation gives:

x← bc̃− ceρ

= b(sT ·A + eT + fi
T )
T ·D − (sT ·A ·D)eρ

= b(e + fi)
T ·Deρ.

(5)

Noting that bfiT ·Deρ = D[i] where the ith row D[i] ∈ Zωρ is interpreted as a
column vector, then proving that

beT ·D + fi
T ·Deρ = bfiT ·Deρ (6)

results in the client learning the correct output. This gives rise to the following
theorem.

5 Thus, the ith row consists of ω log(ρ)-bit chunks of DB[i] ∈ Zωρ .
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Theorem 1. (Correctness) If q ≥ 8ρ2
√
m, then FPIR is correct with high proba-

bility.

Proof. See Appendix A.1.

4.5 Security

To prove security of FrodoPIR, we show that any query b̃ ← FPIR.query(i) is
distributed uniformly in Zmq from the perspective of S (Theorem 2). This general
result proves that FPIR satisfies 1-query indistinguishability (Definition 4) and
we further show that this holds for ` = poly(λ) client queries in Corollary 4.

Theorem 2. (1-query indistinguishability) FPIR is secure under observation of 1
query, under the assumption that LWEq,n,m,χ is difficult to solve.

Proof. See Appendix A.2.

Corollary 4. (`-query indistinguishability) FPIR is secure under observation of
` = poly(λ) queries, under the assumption that MatLWEq,n,m,χ,` is difficult to
solve.

Proof. See Appendix A.3.

4.6 Efficiency

We give the conditions under which FPIR satisfies the efficiency goal of a PIR
scheme, as laid out in Definition 5.

Theorem 3. (Efficiency) Let c be the upper bound of a single client’s FPIR queries.
Then FPIR is efficient when:

128 + nω log(q) + cω log(q) < |DB|.

Proof. This follows by applying Definition 5, considering the communication
costs of FrodoPIR (Figure 4).

5 Parameter Settings and Configurations

We now describe parameter settings and potential optimizations that demon-
strate the versatility of FrodoPIR. The major parameters of the scheme to be
configured are: the concrete security parameter λ; the LWE dimension n; the
LWE modulus q; the uniform ternary distribution, χ, used for sampling LWE
secret and error vectors; the number of bits, ρ, packed into each entry of the DB
matrix, D; the number of elements, m, in the server DB; the bit-length, w, of
each element in DB; and c, the number of queries that a single client makes.

The number of required computational operations is given in Figure 3, the
communication overheads in Figure 4, and the storage overheads in Figure 5.6

Clearly, the aforementioned parameters all have an impact on the protocol effi-
ciency.

6 Recall that ω = w/ log(ρ).
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spreproc cpreproc query respond process

mod q mults nmω n(m+ ω) — mω —
mod q adds n(m− 1)ω (n− 1)(m+ ω) 1 (m− 1)ω ω

PRG nm nm — — —

Fig. 3. Number of operations required in FrodoPIR.

Offline Online

Client upload — m log(q)
Client download 128 + nω log(q) ω log(q)

Fig. 4. Communication overheads (bits) of FrodoPIR.

5.1 Required Invariants

Firstly, FrodoPIR must satisfy Theorem 3:

128 + nω log(q) + cω log(q) < mw. (7)

This equation is satisfied for very large values of c (e.g. c > 18, 000 for m = 216).
Secondly, for correctness (Theorem 1), we must have that:

q ≥ 8ρ2
√
m, (8)

holds. Finally, for security, MatLWEq,n,m,χ,` must provide at least 128 bits of con-
crete classical security. We can estimate the concrete security of LWE instances
with the lattice security estimator [2].

5.2 Fixing LWE Parameters

Before configuring FrodoPIR for efficiency, we first fix a set of parameters that
provide the necessary concrete security guarantees. We focus on those parameters
for MatLWEq,n,m,χ,`, except for m which is the number of DB elements.

Firstly, χ is the uniform ternary distribution. Secondly, we set q = 232, which
allows us to use standard 32-bit unsigned integer operations for the implemen-
tation of the Zq operations. Thirdly, we set n = 1774 as the LWE dimension. In
order to concretely estimate the security of the MatLWEq,n,m,χ,` instance, we will
use the work of Albrecht et al. [2] to provide the security of δ = LWEq,n,m,χ, and
then calculate the concrete security parameter as λ = δ/ log ` (Corollary 2). As `
is the total number of queries that the server observes, we set ` = 252 queries as
a suitable upper bound before rotation of A is required. Therefore, λ = δ − 52.

5.3 Recommended Database Parameters

Let κ = (log(ρ) ·m)/(n · log(q)) denote the improvement factor relative to the
offline client download when compared to the original DB size. In Figure 6, we
give recommended parameter settings for the FrodoPIR scheme.
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with preprocessing without

Server storage 128 +mω log(ρ) 128 +mω log(ρ)
Client storage 128 + c(m+ ω) log(q) 128 + nω log(q)

Fig. 5. Storage overheads of FrodoPIR in bits, according to whether client performs
any offline preprocessing of queries (where c is the number of preprocessed queries),
or not. In the case of no preprocessing being performed, the client storage overhead is
logarithmically dependent on the number of elements in DB.

q 232 232 232 232 232

n 1774 1774 1774 1774 1774
m 216 217 218 219 220

ρ 210 210 210 29 29

κ 13.028 26.056 52.112 93.802 187.603
λ 128 128 128 128 128

Fig. 6. Database, query, and security parameter settings for FrodoPIR.

For each parameter set, the concrete security parameter is 128 bits for over 252

client queries. For larger numbers of queries, the concrete security of the instance
will decrease until a new LWE matrix A is resampled, and the server updates
its public parameters. Security can be increased by increasing the dimension n,
though, this reduces κ. We use this in Appendix B, when applying FrodoPIR for
online SafeBrowsing API checks.

In Section 6, we consider DB elements of size w = 1KB, which leads to
ω ∈ {820, 911}, depending on the value of ρ. Changing w has a direct impact on
performance.

5.4 Additional Optimizations

Processing larger databases via sharding. As m increases beyond 220, we see a
greater relative saving of bandwidth costs relative to the fixed n that is used (as
parameterized by κ). However, this has undesirable impacts on the performance
of the scheme. First, all online server-side computation in the online phase is
linearly dependent on m, and so increasing m immediately results in higher
latency. The offline work scales similarly for client devices, which are typically
constrained and unlikely to cope with vast overheads. Second, the client query
size rapidly grows as it is also linearly dependent on m.

Overall, we expect that the best approach for operating on larger databases
is to shard them into s parallel instances, each using a database of size m/s.
Each instance can then independently process the same single client query. This
allows the client to learn the ith index from each of the s shards from only a single
query. This allows parallelization of server computation, and careful management
of available computing resources. On the client-side, the size of the online query
is linear in m/s, rather than m, which can lead to practical communication
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sizes. Previous work has already highlighted the benefits of performing such
sharding on the server database [31] in terms of increasing amortization factors
and allowing further degrees of parallelization.

Note that each client must download the public parameters of each of the
individual shards. This increases the size of the client download, but with the
benefits of reducing the size of their own query and reducing server-side la-
tency. Additionally, noting the independence of each server-side vector-column
multiplication in FrodoPIR, we could equally leverage sharding by splitting the
server database matrix into smaller subsets of columns for handling larger data
elements.

Database updates. Sharding alone does not reduce the client overhead in prepro-
cessing queries, which remain linear in the total database size. This can become
expensive if the server database is updated frequently: each time the client has
to regenerate their preprocessed query data.

However, coupling sharding with a database updating procedure that touches
only few of the shards can reduce database updates to only re-running the ssetup,
cpreproc, and spreproc procedures on a small fraction of the database. Specifi-
cally, if database updates are confined to a single shard of the database, then
these procedures need only be run on that particular shard after every update.
Updating a single shard of the database results in only requiring the client to
download and process an amount of data that is a 1/(κ · s) fraction of the entire
database. Even for large databases, this fraction is likely to be very small.

Achieving logarithmic client-storage overhead. In Figure 5, it is clear that the
storage overheads for the client are dependent on c, the number of preprocessed
queries. These costs can be reduced significantly to being logarithmically depen-
dent on m, by simply not performing any preprocessing. The reason that the
costs are logarithmic is that the client storage is equal to (λ+ nω log(q)) where,
as mentioned in Section 5, q is chosen to be equal to 8ρ2

√
m. This approach re-

quires derivation of the matrix A and query parameters for every online query.
Since the derivation of A is fairly costly, computation-constrained clients will
benefit from preprocessing client queries.

6 Experimental Analysis

We provide an experimental analysis of the incurred computational runtimes,
bandwidth usage, and financial costs when running FrodoPIR. Further, we high-
light how such costs amortize over the costs of the offline preprocessing phase.
Finally, we compare these costs with the previous stateful PIR schemes — PSIR,
SOnionPIR, and CHKPIR — of [59, 55, 27].

Benchmarking equipment. We run all experiments as single-threaded processes
on an Amazon t2.2xlarge EC2 instance, with 8 CPU cores and 32GB of RAM.
At the time of writing, the cost of transferring data from server to clients is $0.09
per GB, the cost of data transfer from clients to server is free, and the cost of
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computation is $0.3712 per hour of usage (or $0.0464 per CPU hour).7 This is
equivalent to the setup that is used in [55] for comparing SOnionPIR and PSIR.8

Database configurations. We provide non-amortized communication and com-
putation benchmarks for a single server database using each of the parameter
settings provided in Figure 6. We choose w = 213 bits (or 1KB); and ω = 820
for m ≤ 218, and ω = 911 otherwise. These parameters provide 128-bit security
for around 252 client queries.

Source code. Our open-source9 implementation of FrodoPIR is written in Rust,
consists of 735 lines of code for the main functionality, and requires no external
dependencies relating to cryptographic operations. All modular arithmetic is
implemented using instructions associated with the 32-bit unsigned integer type
included in the Rust standard library.

Example application. In Appendix B, we further illustrate how FrodoPIR can be
applied to real-world use-cases, taking, as an example, the Google SafeBrowsing
API [41].

Number of DB items (log(m)) 16 17 18 19 20

Offline
Client download (KB) 5682.47 5682.47 5682.47 6313.07 6313.07

Database preprocessing (s) 92.409 185.30 374.56 825.50 1679.8
Client derive params (s) 0.5208 1.042 2.1 4.29 8.39

Client query preprocessing (s) 0.134 0.265 0.532 1.058 2.111

Online

Client query (KB) 256 512 1024 2048 4096
Server response (KB) 3.203 3.203 3.203 3.556 3.556

Client query (ms) 0.0177 0.0454 0.0813 0.1565 0.3328
Server response (ms) 45.74 89.57 179.3 397.06 779.75

Client output (ms) 0.418 0.4182 0.416 0.4559 0.4627

Fig. 7. Non-amortized performance analysis of FrodoPIR. The “Client derive params”
cost refers to the cost of deriving the LWE matrix A from the seed µ, while “Client
query preprocessing” refers to the cost of query-independent preprocessing required
for a single query. The server offline phase costs can be amortized globally across the
number of queries (C) that are performed, while the client download and parameter
derivation costs can be amortized across the number of queries (c) that they individually
make.

7 https://aws.amazon.com/ec2/pricing/on-demand/, accessed Jan 2022.
8 The financial costs that SOnionPIR quote for running this instance are cheaper than

we mention here, due to the passage of time between both works.
9 https://github.com/brave-experiments/frodo-pir
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6.1 Performance Results

In Figure 7, we provide non-amortized performance results for FrodoPIR. This
involves running a single-threaded server instance, and calculating the running
times and bandwidth usage when interacting with a single client. Later, we
analyze how the offline costs amortize on a per-query basis. Amortization is
calculated over the number of clients C, and the number of queries c each client
makes (where we set c = 500 for all experiments).

Offline phase. The server generates their database matrix DB and public pa-
rameters. This is a client-independent operation that scales linearly in m. This
process includes pseudorandom derivation of the LWE matrix A ∈ Zn×mq from a
single 128-bit seed, which must also be computed by each client. After download-
ing the public parameters, the client performs query-independent preprocessing
for each query that they will make. The results of preprocessing are used during
the online phase. These costs grow roughly linearly in m.

In terms of communication, the server publishes the 128-bit seed, µ, and the
matrix M ∈ Zn×ωq , where ω = w/ log(ρ). The size of the client download is
static for each choice of log(ρ). As a consequence, the total cost only grows when
increasing m dictates that ρ must also decrease.

Online phase. The client computation consists of performing a single addition
operation to modify a single portion of preprocessed data. The client also per-
forms a very small amount of postprocessing of servers responses that is almost
static across all experiments as it is linear in ω. The dominant computation cost
is the server-side processing of the client query that is ≤ 0.8s for all database
sizes.

The dominant communication cost relates to the client query, which is equal
to m log(q) bits and scales linearly in the DB size. The server response is signif-
icantly smaller — ω log(q) bits — resulting in a < 3.6× overhead in the server
response size compared with the original 1KB data element.

Amortization of offline phase. Many of the offline costs in Figure 7 can be amor-
tized significantly over the number of queries that will be launched. In Figure 8,
we give an overview of the rate of this amortization for DB preprocessing and
parameter generation steps, as well as client download. While the cost of the DB
preprocessing is an expensive one-off cost, it is amortized over all queries globally,
i.e. over all clients. The client preprocessing and download size amortizes over
the value of c.

The total amortized computation cost (per-query) for the server and clients
are given in Figure 9. The majority of server costs occur during the relatively
cheap online phase. The majority of client work is performed during the query-
independent offline phase, part of which (derivation of A) can be amortized over
c. Online costs for clients are very small.

Storage costs. Figure 10 shows that, when the client preprocesses c queries
during the offline phase, we see a linear growth in the storage overhead associated
with the database size. This overhead becomes fairly large when |DB| = 220: the
client storage is roughly 2GB.
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Fig. 8. Amortized (per-query) cost of server preprocessing (left) and client offline down-
load size (right).

Fig. 9. Total online and amortized (per-query) offline computation costs for the server
(left) and client (right).
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Fig. 10. Left: Storage costs for clients demonstrating the trade-off between amortization
of offline preprocessing and ensuring logarithmic storage overhead relative to m. Right:
Comparison of online query costs when preprocessing, against performing all query-
related computation in the online phase.

As mentioned in Section 5.3, it is possible to achieve log(m) storage overhead
on the client-side, which may be valuable for storage-constrained clients. The
downside of this approach is that client online query processing grows noticeably,
as seen in the right-side of Figure 10. This is due to having to perform all query-
related processing in the online phase, including the derivation of A from the
public parameters (which can take from between 0.5 to 8.4 seconds, depending
on the database size).10

Financial costs. The server-side financial costs given in Figure 11 take into
account the expenses associated with both bandwidth and single-threaded com-
putation. The initial preprocessing of the server database, and is a little higher
than 1 cent for a database of 220. The online per-query cost is tiny in comparison,
and approximately 0.001 of a cent even for the largest DB size. The total per-
query cost is calculated as the amortized offline costs, plus the online per-query
cost.

6.2 Comparison with Prior Work

In Figure 12, we compare the performance of FrodoPIR with SOnionPIR [55] and
PSIR [59], across three performance criteria: computational runtimes, bandwidth
usage, and financial cost. As mentioned in Section 2, stateless schemes are much
less efficient than stateful schemes, so we do not provide any experimental com-
parisons with them.

10 The matrix A must be rederived on usage to achieve log(m) storage.
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Fig. 11. Financial costs (cents) associated with running the server in FrodoPIR. The
initial setup cost can be amortized globally across all client queries.

The comparisons that we present include the cost of answering queries in
FrodoPIR against the estimated11 costs of running both SOnionPIR and PSIR.12

Note that the costs presented in [55] result from estimating SOnionPIR and
PSIR on the same EC2 hardware (t2.2xlarge) that we used for implementing
FrodoPIR. We also provide details on how these costs amortize as the number of
clients grows.

Our comparison considers total database sizes of |DB| ∈ {216, 218, 220}, and
element sizes of 1KB. Note that SOnionPIR and PSIR allow packing of 30KB
and 3KB of data into each server response [55]. This effectively allows shrinking
the server DB by a factor of 30× and 3×, respectively, in kind. Since such costs
are linear in the size of DB, we reduce the previously estimated runtime costs
of both schemes accordingly. Offline costs for SOnionPIR are dependent on the
number of queries, c, that are made by each client. For each DB size we set
c = 500, the same value as used in [55]. For the financial costs, we provide costs
per CPU hour of server-side computation. The comparison does not cover storage
costs or client computation as neither measurement is explicitly provided by the
previous schemes.

Supporting larger databases. Note that [55] provides estimated costs of the
SOnionPIR and PSIR schemes for a DB of size 224, but RAM overheads of
FrodoPIR mean that the t2.2xlarge EC2 instance is not powerful enough to
process a database of this size. This is also likely to be the case for the previous
schemes. Building an efficient implementation of FrodoPIR for a database of 224

is possible by sharding, using 16 DB instances with 220 elements. In the interest
of maintaining a fair comparison without using parallelization, we do not modify

11 Neither previous scheme has been fully implemented.
12 Where PSIR uses SealPIR as the underlying PIR scheme.
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Fig. 12. Comparison of per-client computational, communication, and financial costs
for the server when running FrodoPIR, SOnionPIR, and PSIR. We assume that each
client makes c = 500 queries. We include amortized costs according to various num-
bers of clients C, to indicate the global amortization potential of FrodoPIR. Individual
charts: (1) Server offline computation (secs) including amortization potential over C
for FrodoPIR; (2): Server online computation (ms), amortized according to number of
DB entries returned; (3): Client offline download (KB); (4): Client online download
(KB); (5): Client online query (KB); (6): Server offline financial cost (US cents per
CPU hour), compared for different values of C; (7): Server online financial cost (US
cents per CPU hour).

the hardware used or make use of sharding. Thus, we limit the comparison to
database sizes ≤ 220.

Security levels. We do not modify the security parameters of either SOnionPIR
or PSIR: they both offer ≤ 115 bits of security according to [2]. In contrast,
FrodoPIR offers 128-bit security for up to 1 billion client queries and higher secu-
rity levels for lower numbers. SOnionPIR and PSIR could achieve higher security
levels by doubling n,13 but while computation times would go unchanged, the
server online response size would increase dramatically.

Computation. In the offline phase (Figure 12 (1)), the server-side computation
for PSIR is zero, since the client simply downloads the entire server DB. The
overall cost of computation in FrodoPIR grows linearly in the database size. While

13 Smaller n would suffice, but n has to be a power-of-two to ensure the efficiency of
NTT-related optimizations.
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SOnionPIR appears to outperform FrodoPIR for a single client, this cost increases
linearly in the number of queries that a client wishes to make. As a consequence,
if the number of queries per-client (c) increases, then the cost of SOnionPIR will
quickly become greater. More importantly, as the number of clients (C) in the
system grows, this cost will continue to increase. In contrast, all preprocessing in
FrodoPIR is client-independent, and thus it is fixed regardless of both c and C.
Therefore, in a large multi-client deployment, it is clear that FrodoPIR is much
cheaper than SOnionPIR.

In the online phase (Figure 12 (2)), PSIR provides the fastest computa-
tion times. Both FrodoPIR and SOnionPIR still provide competitive runtimes.
FrodoPIR requires ≤ 0.8s for responding to a client query on a DB with 220

elements.

Communication. The offline client download cost (Figure 12 (3)) in SOnionPIR
is heavily dependent on the number of queries that will be launched. The cost
of PSIR is essentially the cost of downloading the entire server DB. Note that
the client download in FrodoPIR grows logarithmically in the size of DB. Overall,
since the costs of FrodoPIR amortize across the number of queries launched by
the clients, with a much smaller initial cost than PSIR, it is clear that FrodoPIR
outperforms the alternatives.

In the online phase, the client download (Figure 12 (4)) in FrodoPIR is
smallest for all captured DB sizes. The server response growth rate, even for
|DB| = 220, is < 3.6×, which is significantly smaller than that of SOnionPIR
(128×) and PSIR (320×). The major downside of the FrodoPIR approach is that
the client query in the online phase (Figure 12 (5)) grows linearly in the size
of DB, and is much larger than both SOnionPIR and PSIR — reaching 4MB
for client queries when |DB| = 220. As noted in Section 5.4, this cost can be
reduced using database sharding with the additional benefit of reducing server
computation times, but at the cost of increasing client download sizes during the
offline phase.

Financial costs. In the offline phase (Figure 12 (6)), PSIR provides by far the
most expensive option, due to the high network bandwidth usage. The costs of
SOnionPIR scale with the number of client queries. The costs of FrodoPIR include
a client-independent preprocessing phase, and much lower bandwidth usage than
PSIR. Therefore, for large multi-client deployments, the costs of FrodoPIR will
clearly be much cheaper than both prior schemes.

The online financial costs (Figure 12 (7)) for all protocols are much smaller
than in the offline phase. By far, PSIR is the most expensive protocol to run in
the online phase (again, due to the high communication overhead). The costs
of FrodoPIR outperform SOnionPIR, demonstrating that the trade-off between
computation and communication in FrodoPIR is concretely cheaper to realize on
the server-side.

Comparison with online-free PIR. The CHKPIR scheme [27] demonstrates en-
tirely sublinear (amortized) running times and communication costs. However,
this depends on each client launching a fairly large number of queries them-
selves (e.g.

√
m). As is noted in [27], the offline phase can be implemented using
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Fig. 13. Comparison of the total financial costs of running a server using FrodoPIR with
an online-free PIR scheme that implements the offline phase using SOnionPIR. The
costs are compared for: C = 1 (solid line), C = 1000 (dashed line), and C = 1 million
(dotted line) clients; where each client makes c = 500 queries.

the methods of PSIR or SOnionPIR, and, regardless, it is still non-amortizable
across multiple clients.

To illustrate the bottleneck that the offline phase introduces from a financial
perspective, we can consider a PIR scheme that has zero online costs (which
is clearly a significant underestimate for CHKPIR), and has the offline costs
of SOnionPIR (sublinear in m and generally lower than PSIR). As shown in
Figure 13, FrodoPIR is cheaper to run for databases of size ≤ 218, for c · C
queries. The costs are almost identical when |DB| = 220. We can conclude that
these results, coupled with the benefits of a simple and available implementation,
make FrodoPIR a very attractive option for implementing fast and scalable PIR
for large multi-client systems.

7 Discussion

Supporting Keyword Queries. In the interest of supporting more realistic database
queries, Chor et al. constructed a PIR-by-keyword framework, where the server
DB is a key-value store and client queries are keywords that recover the asso-
ciated values [25]. Their framework runs multiple instances of index-based PIR
as a black-box; FrodoPIR is compatible with this approach. The work of Boyle
et al. [16], based upon multi-server distributed point functions, includes direct
support for keyword queries directly, but it does not appear to generalize to
other PIR schemes.

As well as generic frameworks, FrodoPIR is compatible with external mech-
anisms for deciding keyword-to-index association. Such mechanisms include the
approach detailed by Kogan and Corrigan-Gibbs [48], that furnishes the client
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with O(m) hash prefixes of each keyword, and associates each with a server DB
index. This allows the client to learn the index that they need to query, without
running multiple instances of the PIR scheme. It requires sending O(m) data to
the client but which, in practice, is a very small fraction of the real database.
We discuss practical costs in Appendix B.

Optimizations for server computation. We avoided discussing computational op-
timizations in this work in favor of building an efficient and usable PIR scheme
that non-expert implementers can configure to their particular use-case. How-
ever, to decrease runtimes, the work of Beimel et al. [12] demonstrates mecha-
nisms for achieving subcubic overheads for matrix multiplications, and has been
used in previous PIR scheme’s design to reduce computational workloads [51, 38].
The server offline phase in FrodoPIR involves a large matrix multiplication with
dimensions n×m and m×ω, which would clearly benefit from such an optimiza-
tion. The client offline phase, involves preprocessing c queries, each involving a
vector-matrix multiplication, which could be batched together into a single ma-
trix multiplication. Furthermore, the server online phase involves a vector-matrix
multiplication, for every client query. This optimization can be used by batching
a number of queries together. As is observed by Lueks and Goldberg [51], this
enables the server’s work to scale sublinearly in the number of client queries.

7.1 Other applications

In Appendix B, we illustrate how FrodoPIR can be applied to real-world use-
cases like the SafeBrowsing API [41]. We list various applications that could
also benefit below. Valuable future work would identify whether FrodoPIR is a
practical candidate for solving them.

Certificate auditing. Certificate Transparency (CT) is a system created to in-
crease visibility of issued certificates. This system allows detection of misissued
certificates or other forms of Certificate Authorities (CA) misbehavior, via in-
teraction with one or more public logs. Clients should check that certificates are
indeed included in these logs, but this leads to a potential privacy violation as it
means that, over time, the client presents the browsing history of the user. One
can apply FrodoPIR to check whether the promise of inclusion is fulfilled. A full
discussion of this can be found in [29].

Certificate revocation checks. Certificate revocation checks typically use the On-
line Certificate Status Protocol (OCSP). This mechanism allows CAs to inform
clients if a certificate is revoked by having them query an endpoint. This mech-
anism, however, can violate privacy as the certificates are revealed to the CA.
An alternative is to have clients download certificate revocation lists (CRLs)
from endpoints maintained by CAs. This, though, comes with a huge storage
overhead and the need for regular updates. FrodoPIR could be used to perform
OCSP queries in a privacy-preserving manner.

PIR for streaming. Previous PIR schemes such as Popcorn [43] use PIR for
streaming use-cases, where clients can gradually consume chunks of a data ele-
ment (as in video streaming applications) while hiding what is consumed. The
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capability of FrodoPIR for sharding the server database (Section 5.4) could make
it a viable candidate in this setting.

8 Conclusion

In this work, we built FrodoPIR. Via a simple proof-of-concept Rust implemen-
tation,14 we illustrated via experimental analysis that FrodoPIR is concretely
cheaper than the previous state-of-the-art in stateful PIR schemes, especially
in large multi-client deployments. Overall, we believe that FrodoPIR is the first
single-server PIR scheme that is both flexible and efficient enough to be deployed
at scale, for a variety of applications.
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A Proofs from Section 4

A.1 Proof of Theorem 1

Let b̃ ← b + fi, where i is the requested index of DB by the client. As laid out
in Section 4.4, we must show that Equation (6) holds, with all but negligible
probability. Firstly, note that since e ← (χ)m, then by Corollary 3, we have
that ‖e ·D‖∞ ≤ 4ρ

√
m with high probability. This follows because the number

of samples m is very large and by assuming that each entry in D is equal to
ρ = ‖D‖∞. Consequently:

b(e + fi)
T ·Deρ = bρ/q · (eT ·D + fi

T ·D)e
= bρ/q · (eT ·D) + D[i]e
= by + D[i]e,

(9)

where y = ρ/q · (eT ·D) and D[i] ∈ Zωq is the ith row of D (interpreted as a
column vector). Therefore, ‖y‖∞ < 4ρ2

√
m/q = 1/2 by the statement of the

theorem and, as a consequence:

b(e + fi)
T ·Deρ = D[i], (10)

which is the correct output of the protocol. ut

A.2 Proof of Theorem 2

Let ip← FPIR.ssetup(1λ), pp← FPIR.spreproc(DB), st ← FPIR.cpreproc(pp), let

i0, i1 ← A(ip, pp), let b←$ {0, 1}, and let b̃b ← FPIR.query(st, ib). In particular,

we have that b̃b = sT ·A + eT + fib
T ∈ Zmq , for A ∈ st, s ← (χ)n, e ← (χ)m,

A ← PRG(µ, n,m, q), and fib the m-dimensional vector of all zeroes except
where fib [ib] = q/ρ. Clearly, we can show that FPIR is secure if we can show
that the output of FPIR.query is distributed uniformly.
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Firstly, note that A is sampled as the output of a pseudorandom generator,
therefore, it is indistinguishable from A←$Zn×mq . Therefore, let A be an adver-
sary in the LWEq,n,m,χ decisional security game (Definition 1), receiving (A,u)
as the challenge, and let S be an adversary in the PIR 1-query indistinguisha-
bility game (Definition 4). When A receives the sample in Equation (1), b and

b̃ are distributed identically, and when it receives the sample in Equation (2),
then b←$Zmq . Therefore, the adversary A can simulate the client query to S by

simply sending b̃ = u+fib for b←$ {0, 1}. When S returns their guess b′ ∈ {0, 1}
to A, A checks if b′

?
= b.

Clearly, whatever advantage ε that S has in guessing the correct value of
b, immediately translates to A having advantage ε in the decisional LWEq,n,m,χ
security game. Since we assume that LWEq,n,m,χ is difficult to solve, we therefore
conclude that ε ≤ negl(λ).

To conclude, in the case that b is sampled uniformly, then the adversary has
no advantage in distinguishing since b̃ is distributed uniformly. ut

A.3 Proof of Corollary 4

We can construct a matrix B̃ from each query b̃j (j ∈ [`]) that S observes with
the following structure:

B̃ =
[
b̃1

∥∥∥ · · · ∥∥∥ b̃`]
=
[
(s1

T ·A + e1
T )
T

+ fi1

∥∥∥ · · · ∥∥∥ (s`
T ·A + e`

T )
T

+ fi`

]
= ([s1 ‖ · · · ‖ s`]T ·A + [e1 ‖ · · · ‖ e`]T )

T
+ [fi1 ‖ · · · ‖fi` ]

= S ·A + E + F ∈ Z`×mq .

(11)

Using the same proof strategy as in Theorem 2, we can use A as an adversary
attempting to decide in the decisional MatLWEq,n,m,χ,` security game (Defini-
tion 2). This illustrates that A has advantage equal to that which S has in de-

ciding the uniformity of B̃. Furthermore, by Corollary 2, we know that ε = ` · δ,
where δ is the max advantage of winning in LWEq,n,m,χ. Since ` = poly(λ), then
ε = poly(λ) · negl(λ) = negl(λ). ut

B Example Application: SafeBrowsing

Major browsers such as Google Chrome, Firefox, and Brave integrate a security
service run by Google and known as the SafeBrowsing API [41]. SafeBrowsing
allows browsers to verify if online resources and webpages that the user requests
are “safe”. If a resource has been flagged as “unsafe”, the user is warned by the
browser and asked to explicitly consent visiting the website that contains the un-
safe resource. The SafeBrowsing service relies on a list of blocked resources main-
tained by Google, and it exposes an API that informs the browser if a resource
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is part of the blocked list. The downside of serving queries to the SafeBrowsing
API remotely is that clients would effectively reveal their browsing patterns to
Google. It is clear that it will be important to build mechanisms that preserve
client privacy from third parties (like Google, in this case), while still being able
to inform users if they are about to load malicious content.

B.1 Current SafeBrowsing Implementation

Local storage. In order to avoid calling the remote API for every resource, the
entire SafeBrowsing blocklist could be shipped with each browser. Unfortunately,
due to the size of the full blocklist (> 90MB), it is not optimal to send the full
blocklist to the clients. Instead, the SafeBrowsing service ships to every browser
a compressed and probabilistic data structure that contains an approximate view
of the SafeBrowsing blocklist. This data structure allows performing probabilistic
checks of inclusion, with non-negligible chances of false-positives occurring and
no chance of false-negatives. Due to the rate of potential false positives, if an
inclusion check returns that a resource is part of the data structure, the browser
remains uncertain. In order to remove that uncertainty, the browser confirms
if the resource is unsafe by calling the remote SafeBrowsing API. Thus, the
browser only relies on the remote API call to SafeBrowsing services when the set
inclusion against the local data structure returns a potential false positive. This
mechanism reduces considerably the number of remote API calls at the expense
of storing a compressed, space optimized data structure locally in the browser.

Specifically, the local blocklist is a set of 32-bit hashes of the resource URI,
and the full SafeBrowsing blocklist consists of a key-value database mapping a
32-bit hash to a SHA256 hash of a blocked resource URI. The reduction and
compression of the local blocklist results in storage and bandwidth savings of
about 8× compared to the full SafeBrowsing blocklist. We summarize the two
distinct phases of SafeBrowsing checks in the following.

1. Phase 1: Local check First, the browser computes the 32-bit hash of the
resource URI that has been requested, and checks if the 32-bit hash is part
of the local storage. If the set inclusion operation returns ‘false’ (i.e. the hash
of the resource does not exists in the local data structure), then the browser
considers the resource safe and proceeds. If the set inclusion operation returns
‘true’ (i.e. the 32-bit resource hash is part of the local block list), the client
proceeds to the next phase.

2. Phase 2: Remote check When Phase 1 identifies a possibly unsafe resource,
the browser needs to confirm whether the resource is a false positive or
not. To do so, it requests the full SHA256 hash of the resource’s URI by
querying the remote SafeBrowsing API for the 32-bit hash of the resource
URI computed in Phase 1. If the full SHA256 hash returned by the remote
SafeBrowsing API matches with the SHA256 of the resource URI, then the
resource is part of the SafeBrowsing blocklist, and the browser considers the
resource unsafe.
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Privacy considerations. The remote SafeBrowsing resource check (Phase 2) re-
quires the browser to explicitly include the 32-bit hash identifying the resource
that is being checked for inclusion on the SafeBrowsing blocklist. As noted by
[13, 36], this request leaks information about the browsing history of the user,
as the SafeBrowsing API service is able to learn which content a particular user
is interested in. Over time, this information can be used by the SafeBrowsing
service provider to construct a behavior profiling of web users without their
consent.

B.2 SafeBrowsing via FrodoPIR

FrodoPIR can be used to implement the remote SafeBrowsing API service, such
that no leakage occurs during the remote SafeBrowsing API check. The intuition
is that, once the index that must be queried is known to the client, the remote
check can be performed via a PIR query to a remote FrodoPIR database, that
stores all the SHA256 hashes of the unsafe URIs. Given the privacy guarantees
of FrodoPIR, the client does not leak which resource ID is being queried.

Requirements. Based on the estimates provided by [48], the current SafeBrows-
ing blocklist contains about 3 million entries. The blocklist grows at a rate of
30, 000 new entries per week. Each of the values in the database consists of a
SHA256 hash of the content URI.

Mapping URL hashes to query indices. As in [48], we will assume that local
blocklist is augmented to include the index that must be queried in the online
database. That is, when the client finds a match in their local blocklist, they use
the corresponding index i that is included to make a query for element i in the
remote server database.

Database configuration. As shown in Section 5, FrodoPIR provides a high degree
of flexibility, allowing developers to choose which trade-offs to make when de-
ploying an instance of the PIR database. We now suggest the following database
configuration to implement FrodoPIR for SafeBrowsing:

– We choose q = 232 and n = 1774, which should be satisfactory for even the
large number of clients using major Internet browsers that integrate with
the SafeBrowsing API. According to [2], this provides 128-bit security for
252 client queries. In other words, this allows 4 billion clients to each make
1 million queries, which should be more than enough.

– We require w = 256 bits for storing each URI hash in the server database.
– Let m̃ be the total number of elements in the SafeBrowsing database. We

require that m̃ ≥ 221 to accommodate all the 3 million entries and subsequent
updates [48]. However, we leverage sharding to break down the databases into
smaller sub-databases, as explained in Section 5.4. Assuming that FrodoPIR
is running on a machine with 16 cores, we can split the blocklist into s =
16 sub-databases, resulting in setting m = 218 per shard. This provides a
database with total size 222, which is enough to store the entire blocklist.

– Given w, m and q, we set ρ = 210 so that the correctness guarantee from
Theorem 1 holds true.
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Offline
Client download (KB) 180

Database preprocessing (s) 28.555
Client derive params (s) 2.2281

Client query preprocessing (s) 0.573

Online

Client query (KB) 1024
Server response (KB) 0.1

Client query (ms) 0.097
Server response (ms) 5.223

Client output (ms) 0.012

Fig. 14. Performance analysis of the FrodoPIR scheme when communicating with a single
database shard, using the parameters defined in Section B.2.

– We calculate ω = m/ log(ρ) = 26 as described in Section 5.
– The local blocklist that each client must download contains 32 · (m+ 1) bits

to include each 32-bit hash prefix plus the corresponding 32-bit index.

We leverage sharding in two different ways. On one hand, to decrease the
size of the database by splitting it into sub-databases, allowing us to reduce the
size m of each sub-database, and to optimize both user and server performance
and bandwidth. In addition, sharding is used to implement a low-cost database
update mechanism. Updates to the blocklist happen by adding elements to one
sub-database only, in turn requiring clients to derive new parameters only for
a single shard at every update, as explained in Section 5.4. This is possible in
SafeBrowsing because DB updates are typically only additions, and thus deletion
of old content in previous shards is rarely required [48].

B.3 Implementation and Raw Costs

We set up the experimental environment, and report results in Figure 14, corre-
sponding to the raw costs of using the FrodoPIR scheme on the aforementioned
parameters. We run all experiments as single-threaded processes on the same
Amazon t2.2xlarge EC2 instance, with 8 CPU cores and 32GB of RAM, as
was used in Section 6.

B.4 Performance Analysis

From Figure 14, we estimate the performance of instantiating the SafeBrowsing
API for a single database shard using FrodoPIR, using the parameter set defined
in Section B.2. Our extrapolations are based on the following set of usage model
assumptions that are taken from the previous work of Kogan and Corrigan-
Gibbs [48] on exploring usage of PIR for satisfying the demands of SafeBrowsing.

– On average, clients launch a query every 44 minutes. Assuming 12 hours of
daily usage, this leads to approximately 16 queries per day.
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– On average, the server database is updated every 94 minutes. This leads to
around 16 DB updates per day, with a weekly addition of around 30, 000
records.

– The server is a collection of Z replicas that are distributed globally, that
each independently possess and process queries on the same database. Any
client query can be fulfilled by a single server.

– Client storage must be, at least, a constant factor smaller than the entire
SafeBrowsing database size.

Database initialization and updates. The main server initializes the sub-database,
public parameters, and local blocklist for each individual shard. Each of these
remain static for a monthly period and are downloaded by each server replica.
When the main server initializes, or rotates the matrix A, it posts the public
parameters pp = (µ,M = {Mi = A ·Di}i∈[16]) and local blocklists to a pub-
lic location that clients can access and download from. Note that Mi ∈ Zm×ωq

corresponds to the public parameters made available for each sub-database.
Based on our usage model, we will assume that there are 16 database updates

made by the server, each containing 268 records. We assume that clients each
download and process 8 updates per day. Each database update touches a single
shard DBi, and results in uploading a new value of Mi.

Client processing. Client preprocessing amounts to preprocessing 16 queries
per day, using the server provided parameters pp. After every update, the client
needs to regenerate the remaining preprocessed state that is associated with the
sub-database that was updated. Recall that the client stores:

X = (bj = sT ·A + eT , Cj = {ci = sj
T ·Mi}i∈[16])j∈[16]

for each of the j ∈ [16] queries that the client will launch, and for each of the
i ∈ [16] database shards. The client must also store each sj that it samples, for
responding to server updates as well as the local blocklist.

Overall, at the start of each day, the client rederives A ← PRG(µ, n,m, q),
and computes the set X. Every time that the client makes a remote query it
removes a pair (bj , Cj) from storage, and sends b̃j = b + fι to the server, for
query index ι computed during the local blocklist check. Whenever the server
issues a database update for shard i, the client redownloads Mi and the local
blocklist, and uses sj to update ci = sj

T ·Mi ∈ Cj , for each remaining j (i.e.
unused preprocessed query data). According to Figure 14, we have the following
(per-day) client computational costs.

– A single derivation of A.
– preprocessing of 16 queries for each of the 16 shards.
– Updating of 2

∑7
a=1 a = 56 queries per day.

– 16 individual online queries.

We ignore the cost of running queries on the 32-bit hashes in the local blocklist,
since these are negligible by comparison. Furthermore, the per shard cost of
updating preprocessed query data is almost zero. Therefore, we calculate the
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total CPU costs of each client to amount to 32.96+16·0.47+16∗0.00025 = 40.48
seconds per day.

Client download. The initial client download of public parameters is equal to
128 + 16 · (nω log(q)) = 23, 615, 616 bits, which corresponds to around 2.82MB.
The total size of the local blocklist is approximately 32 · 3million bits, which is
equal to 11.44MB. The running download cost per-day is calculated as 16ω log(q)+
8nω log(q)) + 32 ∗ 268 = 11, 829, 632 bits, which is roughly 1.41MB.

Client query. The client query is linear in the size of a single shard, which has
a maximum of 218 elements. Therefore, each query is around 1MB in size, based
on the costs from Figure 7. As a consequence, this results in roughly 16MB of
additional communication per-day.

Client storage. The client needs ∼ 1MB to store each preprocessed query, and
each secret vector sj , for j ∈ [16]. In total, this represents about 16MB of
required storage. Secondly, the client must store the local prefix table for the
SafeBrowsing API which amounts to storing a further 11.44MB of data. Thirdly,
the client stores the public parameters made available by the server, which totals
2.82MB. Overall, the maximum client storage overhead is ∼ 30.69MB, which is
a 91.55/30.26 = 3.0× saving compared with storing the original database. As
the client makes queries, it deletes used preprocessed data, and so this storage
overhead will decrease as the day progresses.

Server processing. The non-private SafeBrowsing API has an average latency
of around 90ms per client query [48]. This is achieved using Z = 143 servers
answering client queries. Note that a single FrodoPIR server can answer a single
client query in ∼ 16ms (Figure 14). We assume that 1 billion queries are received
uniformly in 90ms windows over a 44 minute period.15 Therefore, in each 90ms
window around 29334 client queries are received. Further, we assume that each
server can answer 3 client queries in 90ms (including time taken to receive and
respond to the client HTTP request). To achieve this, we would need at least
9778 individual servers each answering queries on the same FrodoPIR database
for servicing 1 billion clients. Clearly, this is much more expensive than running
the non-private version of SafeBrowsing, but such a number of servers is still
within the realms of practicality, whilst preserving client privacy.

Comparison with [48]. The work of Kogan and Corrigan-Gibbs presents two
PIR-based constructions for running the SafeBrowsing API, one based on PIR
from distributed point functions (dpfPIR), and the other based on offline-online
PIR (ooPIR). Both schemes require two non-colluding servers. We compare the
performance of running the SafeBrowsing API using FrodoPIR against both dpf-
PIR and ooPIR in Figure 15.

Clearly, FrodoPIR involves heavier usage costs compared to all known solu-
tions, either non-private or using multi-server PIR. As previously highlighted,
a limitation of the FrodoPIR scheme is the client request size, which makes up
a large proportion of the total communication (496MB per month, as opposed
to 43.7MB of download). The client computation is also much heavier than in

15 In other words, simulating 1 query from every client every 44 minutes.
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Performance indicators Non-private dpfPIR ooPIR FrodoPIR

Servers per 1B users 143 9047 1348 9778∗

Latency (ms) 90 122 91 90∗

Client init (sec) 3.1 2.6 13.3 32.96∗

Client running (sec/month) 0.5 0.8 8.0 1272.0∗

Initial communication (MB) 5.0 5.0 10.3 2.82
Online communication (MB/month) 3.0 3.6 9.0 539.7

Max storage (MB) 4.5 4.5 26.1 30.69∗

Fig. 15. Comparison of instantiating the SafeBrowsing API using either FrodoPIR, or via
the two-server PIR schemes of [48]. Costs of FrodoPIR that are estimated are marked
with asterisks.

multi-server PIR, due to the requirement for computing high-dimensional cryp-
tographic operations when preprocessing queries.

Otherwise, our estimates suggest that FrodoPIR can provide adequate perfor-
mance for operators where non-colluding PIR servers are impossible to set up.
However, it is worth noting that the experimental analysis of [48] provides sig-
nificantly more detail than we do here. Our goal is to give a broad understanding
of the increased overheads of using FrodoPIR.
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