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Ad and tracking blocking extensions are popular tools for improving web performance, privacy and aesthetics.
Content blocking extensions generally rely on �lter lists to decide whether a web request is associated with
tracking or advertising, and so should be blocked. Millions of web users rely on �lter lists to protect their
privacy and improve their browsing experience.

Despite their importance, the growth and health of �lter lists are poorly understood. Filter lists are main-
tained by a small number of contributors who use undocumented heuristics and intuitions to determine what
rules should be included. Lists quickly accumulate rules, and rules are rarely removed. As a result, users’
browsing experiences are degraded as the number of stale, dead or otherwise not useful rules increasingly
dwarf the number of useful rules, with no attenuating bene�t. An accumulation of “dead weight” rules also
makes it di�cult to apply �lter lists on resource-limited mobile devices.

This paper improves the understanding of crowdsourced �lter lists by studying EasyList, the most popular
�lter list. We measure how EasyList a�ects web browsing by applying EasyList to a sample of 10,000 websites.
We �nd that 90.16% of the resource blocking rules in EasyList provide no bene�t to users in common browsing
scenarios. We use our measurements of rule application rates to taxonomies ways advertisers evade EasyList
rules. Finally, we propose optimizations for popular ad-blocking tools that (i) allow EasyList to be applied on
performance constrained mobile devices and (ii) improve desktop performance by 62.5%, while preserving
over 99% of blocking coverage. We expect these optimizations to be most useful for users in non-English
locals, who rely on supplemental �lter lists for e�ective blocking and protections.
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security and privacy.

ACM Reference Format:
Peter Snyder, Antoine Vastel, and Benjamin Livshits. 2020. Who Filters the Filters: Understanding the Growth,
Usefulness and E�ciency of Crowdsourced Ad Blocking. Proc. ACM Meas. Anal. Comput. Syst. 4, 2, Article 26
(June 2020), 24 pages. https://doi.org/10.1145/3392144

1 INTRODUCTION
As the web has become more popular as a platform for information and application delivery, users
have looked for ways to improve the privacy and performance of their browsing. Such e�orts
include popup blockers, hosts.txt �les that blackhole suspect domains, and privacy-preserving
proxies (like Privoxy 1) that �lter unwanted content. Currently, the most popular �ltering tools are
ad-blocking browser extensions, which determine whether to fetch a web resource based on its
1http://www.privoxy.org/
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URL. The most popular ad-blocking extensions are Adblock Plus 2, uBlock Origin 3 and Ghostery 4,
all of which use �lter lists to block unwanted web resources.
Filter lists play a large and growing role in making the web pleasant and useful. Studies have

estimated that �lter lists save users between 13 and 34% of network data, decreasing the time and
resources needed to load websites [3, 17]. Others, such asMerzdovnik et al. [15] and Gervais et al. [4],
have shown that �lter lists are important for protecting users’ privacy and security online. Users
rely on these tools to protect themselves from coin mining attacks, drive-by-downloads [11, 24]
and click-jacking attacks, among many others.
Though �lter lists are important to the modern web, their construction is largely ad hoc and

unstructured. The most popular �lter lists—EasyList, EasyPrivacy, and Fanboy’s Annoyance List—
are maintained by either a small number of privacy activists, or crowdsourced over a large number
of the same. The success of these lists is clear and demonstrated by their popularity. Intuitively,
more contributors adding more �lter rules to these lists provide better coverage to users.
However, the dramatic growth of �lter lists carries a downside in the form of requiring ever

greater resources for enforcement. Currently, the size and trajectory of this cost are not well
understood. We �nd that new rules are added to popular �lter lists 1.7 times more often than old
rules are removed. This suggests the possibility that lists accumulate “dead” rules over time, either
as advertisers adapt to avoid being blocked, or site popularity shifts and new sites come to users’
attention. As a result, the cost of enforcing such lists grows over time, while the usefulness of the
lists may be constant or negatively trending. Understanding the trajectories of both the costs and
bene�ts of these crowdsourced lists is therefore important to maintain their usefulness to web
privacy, security and e�ciency.
This work improves the understanding of the e�ciency and trajectory of crowdsourced �lter

lists through an empirical, longitudinal study. Our methodology allows us to identify which rules
are useful, and which are “dead weight” in common browsing scenarios. We also demonstrate two
practical applications of these �ndings: �rst in optimally shrinking �lter lists so that they can be
deployed on resource-constrained mobile devices, and second, with a novel method for applying
�lter list rules on desktops, which performs 62.5% faster than the current, most popular �ltering
tool, while providing nearly identical protections to users.

1.1 Research questions
For two months, we applied every day an up-to-date version of EasyList to 10,000 websites, com-
prising both the 5K most popular sites on the web and a sampling of the less-popular tail. We aimed
to answer the following research questions:

(1) What is the growth rate of EasyList, measured by the number of rules?
(2) What is the change in the number of active rules (and rule “matches”) in EasyList?
(3) Does the utility of a rule decrease over time?
(4) What proportion of rules are useful in common browsing scenarios?
(5) Do websites try to stealthily bypass new ad-blocking rules, and if so, how?
(6) What is the performance cost of "stale" �lter rules to users of popular ad-blocking tools?

1.2 Contributions
In answering these questions, we make the following primary contributions:

2https://adblockplus.org/
3https://github.com/gorhill/uBlock
4https://www.ghostery.com
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(1) EasyList over time: we present a 9-year historical analysis of EasyList to understand the
lifetime, insertion and deletion patterns of new rules in the list.

(2) EasyList applied to the web: we present an analysis of the usefulness of each rule in
EasyList by applying EasyList to 10,000 websites every day for over two months.

(3) Advertiser reactions: we document how frequently advertisers change URLs to evade
EasyList rules in our dataset and provide a taxonomy of evasion strategies.

(4) Faster blocking strategies: we propose optimizations, based on the above �ndings, to make
applying EasyList performant on mobile devices, and 62.5% faster on desktop environments,
while maintaining over 99% of coverage.

1.3 Paper organization
The remainder of this paper is organized as follows. Sections 2 and 7 provides a brief background
about tracking and ad-blockers as well as a discussion of the related work. Section 3 presents
a 9-year analysis of EasyList’s evolution. Section 4 presents how EasyList rules are applied on
websites. Section 5 studies how our �ndings can improve ad-blocking applications on iOS and
proposes two new blocking strategies to process requests faster. Finally, in Section 6 we present
the limitations, and we conclude the paper in Section 8.

2 BACKGROUND
2.1 Online tracking
Tracking is the act of third parties viewing, or being able to learn about, a users’ �rst-party
interactions. Prior work [2, 10, 23] has shown that the number of third-party resources included in
typical websites has been increasing for a long time. Websites include these resources for many
reasons, including monetizing their website with advertising scripts, analyzing the behavior of their
users using analytics services such as Google analytics or Hotjar, and increasing their audience
with social widgets such as the Facebook share button or Twitter retweet button.

While third-party resources may bene�t the site operator, they often work against the interest of
web users. Third-party resources can harm users’ online privacy, both accidentally and intentionally.
This is particularly true regarding tracking scripts. Advertisers use such tracking tools as part of
behavioral advertising strategies to collect as much information as possible about the kinds of
pages users visit, user locations, and other highly identifying characteristics.

2.2 Defenses against tracking
Web users, privacy activists, and researchers have responded to tracking and advertising concerns by
developing ad and tracker blocking tools. Most popularly these take the form of browser extensions,
such as Ghostery or Privacy badger.5 These tools share the goal of blocking web resources that are
not useful to users, but di�er in the type of resources they target. Some block advertising, others
block trackers, malware or phishing. These tools are popular and growing in adoption [14]. A report
by Mozilla stated that in September 2018, four out of the 10 most popular browser extensions on
Firefox were either ad-blockers or tracker blockers. Adblock Plus, the most popular of all browser
extension, was used by 9% of all Firefox users 6.

Ad and tracking blockers operate at di�erent parts of the web stack.
• DNS blocking relies on a hosts �les containing addresses of domains or sub-domains to
block, or similar information from DNS. This approach can block requests with domain or

5https://www.e�.org/fr/node/99095
6https://data.�refox.com/dashboard/usage-behavior
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sub-domain granularity, but cannot block speci�c URLs. Examples of domain-blocking tools
include Peter Lowe’s list 7, MVPS hosts 8 or the Pi-Hole project 9.

• Privacy proxies protect users by standing between the client and the rest of the internet, and
�ltering out undesirable content before it reaches the client. Privoxy is a popular example of
an intercepting proxy.

• Web browsers can attempt to prevent tracking, either through browser extensions or as part
of the browser directly. These tools examine network requests and page renderings, and use a
variety of strategies to identify unwanted resources. Some tools, such as Privacy Badger use a
learning-based approach, while most others use �lter lists like EasyList 10 or EasyPrivacy 11.

2.3 EasyList
EasyList, the most popular �lter list for blocking advertising, was created in 2005 by Rick Petnel. It
has been maintained on Github 12 since November 2009. EasyList is primarily used in ad-blocking
extensions such as Adblock Plus, uBlock origin and Adblock, and has been integrated into privacy
oriented web browsers13. Tools also exist to convert EasyList formats to other privacy tools, like
Privoxy 14,

EasyList consists of tens-of-thousands of rules describing web resources that should be blocked
or hidden during display. The format also includes syntax for describing exceptions to more general
rules. EasyList uses a syntax similar to regular expressions, allowing authors to generalize on
patterns used in URLs.
EasyList provides two categories of bene�t to users. First, EasyList describes URLs that should

be blocked, or never fetched, in the browser. Blocking resources at the network layer provides
both performance bene�ts (e.g. reduced network and processing costs) and privacy improvements
(e.g. reduction in number of parties communicated with or removal of �ngerprinting script code).
Second, EasyList describes page elements that should be hidden at rendering time. These rules are
useful when blocking at the network layer is not possible.
Element hiding rules can improve the user experience by hiding unwanted page contents, but

cannot provide the performance and privacy improvements that network layer blocking provides.
There are three types of rules in EasyList:

(1) Network rules, that identify URLs of requests that should be blocked.
(2) Element rules, that indicate HTML elements that should be hidden.
(3) Exception rules, that contradict network rules by explicitly specifying URLs that should

not be blocked, even though they match a network rule.

Figure 1 shows the constitution of EasyList in February 2019. Of the 71,217 rules making up
EasyList, 33,703 (47.3%) were network rules, 6,125 (8.6%) were exception rules, and 31,389 (44.1%)
were element rules.

7http://pgl.yoyo.org/adservers/
8http://winhelp2002.mvps.org/hosts.htm
9https://pi-hole.net/
10https://easylist.to/pages/about.html
11https://easylist.to/easylist/easyprivacy.txt
12https://github.com/easylist/easylist
13https://brave.com/
14https://projects.zubr.me/wiki/adblock2privoxy
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Fig. 1. Distribution of rules by type in EasyList.

3 COMPOSITION OF EASYLIST OVER TIME
This section measures how EasyList has evolved over its 9-year history, through an analysis of
project’s public commit history. The section proceeds by �rst detailing our measurement method-
ology, along with our �ndings that EasyList has grown to comprise nearly 70,000 rules and that
it is primarily maintained by a very small number of people. The section concludes by showing
that most rules stay more than 3.8 years in EasyList before they are removed, suggesting a huge
accumulation of unused rules.

3.1 Methodology
EasyList is maintained in a public repository on GitHub. We use GitPython 15, a popular Python
library, to measure commit patterns and authors in the EasyList repository over the project’s
10-year history.

3.1.1 Measurement frequency. For every commit in the EasyList repository, we record the author
and the type and number of rules modi�ed in the commit.

First we grouped commits by day. We then checkout each day commits and measure which rules
have been added and removed since the previous day. We use this per-day batching technique to

15https://gitpython.readthedocs.io/en/stable/index.html
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avoid artifacts introduced by git diff, which we found causes over-estimations of the number of
rules changed between commits.

3.1.2 Accounting for changes in repository structure. The structure of the EasyList repository has
changed several times over the project’s history. At di�erent times, the list has been maintained in
one �le or several �les. The repository has also included other distinct-but-related projects, such as
EasyPrivacy. We use the following heuristics to attribute rules in the repository to EasyList.
When the repository consists of a single easylist.txt �le, we check to see if the �le either

contains references (e.g. URLs or �le paths) to lists hosted elsewhere, or contains only �lter rules.
When the easylist.txt �le contains references to other lists, we treat EasyList as the union of
all rules in all referenced external lists. When easylist.txt contains only �lter rules, we treat
EasyList as the content of the easylist.txt �le.

When the repository consists of anything other than a single easylist.txt �le, we consider Ea-
syList to be the content of all the �les matching the following regular expression ’easylist_*.txt’
and that are located in the main directory or in a directory called easylist.

3.2 Results
3.2.1 Rules inserted and removed. Figure 2 presents the change in the size of EasyList over time. It
shows the cumulative number of rules inserted, removed, and present in the list over nine years.
Rules are added to the list faster than they are removed, causing EasyList to grow larger over time.
Over a 9-year period, 124,615 rules were inserted and 52,146 removed, resulting in an increase of
72,469 rules. EasyList’s growth is mostly linear. One exception is the sharp change in 2013, when
“Fanboy’s list”, another popular �lter list, was merged into EasyList.

3.2.2 Modification frequency. We analyzed the distribution of the time between two commits in
EasyList and observed that EasyList is frequently modi�ed, with a median time between commits
of 1.12 hours, and a mean time of 20.0 hours.

3.2.3 EasyList contributors. Contributors add rules to EasyList in two ways. First, potential con-
tributors propose changes in the EasyList forum.16 Second, contributors can post issues on the
EasyList Github repository.

Though more than 6,000 members are registered on the EasyList forum, we �nd that only a small
number of individuals decide what is added to the project. The �ve most active contributors are
responsible for 72,149 of the 93,858 (76.87%) commits and changes. 65.3% of contributors made less
than 100 commits.

3.2.4 Lifetime of EasyList rules. Figure 3 presents the distribution of the lifetime of rules in EasyList.
The �gure considers only rules that were removed during the project’s history. Put di�erently, the
�gure shows how much time passed between when a rule was added to EasyList, and when it was
removed, for the subset of rules that have been removed. We observe that 50% of the rules stayed
more than 3.8 years (45.5 months) in EasyList before being removed.

4 EASYLIST APPLIED TO THEWEB
This section quanti�es which EasyList rules are triggered in common browsing patterns. We
conducted this measurement by applying EasyList to 10,000 websites every day for two months,
and recording which rules were triggered, and how often.
This section �rst presents the methodology of a longitudinal, online study of a large number

of websites. We then present the results of this measurement. We �nd that over 90% of rules in

16https://forums.lanik.us/
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Fig. 2. Evolution of the number of rules in EasyList. Over a 10-year period, EasyList grew by more than 70,000
rules.

EasyList are never used. We also show that on average, 29.8 rules were added to the list every day,
but that these new rules tend to be less used than rules that have been in EasyList for a long time.

The section concludes by categorizing and counting the ways advertisers react to new EasyList
rules. We detect more than 2,000 situations where URLs are changed to evade rules and present a
taxonomy of observed evasion strategies.

4.1 Omi�ing element rules
The results presented in this section describe how often, and under what conditions, network and
exception rules apply to the web. However, as discussed in Section 2.3, EasyList contains three types
of rules: network rules that block network requests, exception rules that prevent the application of
certain network rules, and element rules that describe parts of websites that should be hidden from
the user for cosmetic reasons.
We omit element rules from our measurement for three reasons. First, our primary concern is

to understand how the growth and changes in EasyList a�ect the privacy and security of Web
browsing, and element rules have no e�ect on privacy or security. In all modern browsers, hiding
page elements has no a�ect on whether those elements are fetched from the network and, in the
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Fig. 3. Cumulative distribution function of the lifetime of the rules in EasyList. Half of the rules stay more
than 3.8 years in EasyList.

case if <iframe> elements, rendered in memory 17. In all but uncommon edge cases, relating mostly
to memory availability, hidden elements are still fetched from network, though possibly with a
lower priority.
Second, we omit element rules from the study because their application is highly variable, and

would add a not-useful amount of dimensionality to the data. Element rules apply di�erently
depending on how users interact with the page, since page layouts can change in response to user
interaction and timer events. This is especially true in highly dynamic, client-side web applications,
like those written in JavaScript frameworks like React 18 and Angular 19, since client-side page
modi�cations can change which element rules apply. Network rules, in contrast, have far less
(though not zero) variability over the life-cycle of a page 20.

Third, though least signi�cantly, we omit element rules from consideration because there are
common uses of EasyList where element rules are not applied, lessening the value of measuring

17In fact, many Web applications use this quirk of hidden iframes to create simpli�ed, early versions of server-push
communication, an approach called “long polling”. Similarly, tracking scripts like Google Analytics use never-rendered,
never-visible images for client-server communication.
18https://reactjs.org/
19https://angularjs.org/
20There are exceptions here, such as analytic scripts that initiate network requests to recorder, server side, user behaviors.
However, note that these are relativity uncommon, since the initial analytic script is generally blocked.
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Measurement Counts

# days 74
# domains 10,000
# non-responsive domains 400

Avg # pages per day 29,776
Avg # pages per domain per day 3.74
Total # pages measured 3,260,479

Table 1. Statistics of the number of domains and sites measured during online EasyList measurement.

this portion of the list. The most common examples of such uses are privacy-preserving network
proxies (e.g. Privoxy 21 and SquidGuard 22).

4.2 Methodology
This subsection discusses how we measured how EasyList e�ects typical web browsing, including
what sites were measured, the instrumentation used tool take the measurements, and what informa-
tion was collected. The following subsection describes the results of executing this methodology.

4.2.1 Crawl description. To understand the usefulness of rules in EasyList, we applied EasyList to
10,000 websites every day for over two months (74 days). We selected these 10,000 websites from
two groups:
(1) Popular websites: Websites from the top 5K Alexa, a ranking of sites online by popularity.
(2) Unpopular websites: 5,000 websites randomly selected from the top Alexa one-million, but

not present in the set of popular websites. (i.e. rank 5,001–1 million)
We crawled the web using an instrumented version of Chromium to measure which �lter rules

were applicable when browsing a large number of websites in an anonymous browsing scenario.
The crawls were launched from AWS Lambda instances located in the us-east-1 region.

For each day of the experiment, we �rst visit the landing page of each URL in the popular and
unpopular sets. We then randomly selected up to three URLs referenced in anchor tags, pointing to
pages on the eTLD+1 domain, and visit these URLs. This resulted in between 10,000 and 40,000
pages being measured every day. Table 1 provides high level statistics of these measurements.

We use the Chrome devtools protocol 23 to record the following information about each network
request made during page execution:

• Time of the request
• URL of the request
• URL of the domain that initiated the request
• Type of resource fetched (e.g. image, script, sub-documents)
• Hash of the response
• Size of the response

To avoid introducing side e�ects, we did not block any requests during our measurements. We
instead �rst recorded all HTTP requests made when interacting with each site. Next, we applied
EasyList o�ine using Brave’s ad-blocker NodeJS module 24. We determine if each request would
21https://www.privoxy.org/
22http://www.squidguard.org/index.html
23https://chromedevtools.github.io/devtools-protocol/
24https://github.com/brave/ad-block
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have been blocked, excepted, or allowed. A “blocked” request is one that matches an EasyList
network rule, indicating that the resource should not be fetched. An “excepted” request is one that
matches a blocking rule, but also matches a “excepting” rule, indicating that the resource should be
fetched anyway. An “allowed” request matches no EasyList rules.

4.2.2 Description of the dataset. Our dataset comprises every network request made during our
crawl of 10,000 websites, for 74 days between July 24th, 2018 and October 5th, 2018. Among the
10,000 websites crawled daily, 400 (4.0%) never responded during the experiment. We attribute this
to a mix of websites becoming inactive (common among unpopular websites [18]) and websites
blocking IP addresses belonging to AWS to deter crawlers. The existence of such AWS-including
IP blacklists has been documented in other work [6]. We discuss possible limitations to our study
more in Section 6.

4.3 Results
4.3.1 Proportion of EasyList rules used. We consider a rule as used during a crawl if the rule
matched at least one network request made during the crawl. We measure the proportion of
network and exception rules used during our crawls. As noted above, we measure network and
exception rules, but not element (e.g. cosmetic) rules because network rules impact performance
and privacy.

We �nd that the vast majority of network and exception rules are never used. Only 9.84% (4, 038)
of rules were used even once during our measurements.
An even smaller number of network and exception rules are frequently used. On average, only

5.14% of EasyList network and exception rules were used at least once per day (Research Question
4). We also observed that the number of active rules is stable over time (Research Question 2).

Figure 4 shows the cumulative distribution function of how often �lter rules were used during
the 74 days of the experiment. The distribution is skewed; the majority of rules are either not used
(90.16%), or were used between 1 and 100 times (4.45%). Only 3.56% of the rules were used between
100 and 1,000 times, and 1.83% more than 1000 times.

4.3.2 Usefulness of EasyList additions. During the experiment, 2, 202 network and exception rules
were added to EasyList, an average of 29.8 new rules per day (Research Question 1). We refer to
rules added to EasyList during our measurement campaign as new; we call rules old if they existed
in EasyList at the start of the measurement period.
The vast majority of rules, new and old, were not used during our measurements. Of the 2, 202

rules added during the study period, 208 (9.45%) were used at least once. Those measurements are
roughly similar for old rules (9.84%). However, when considering only rules that were used at least
once, we found that new rules were used nearly an order of magnitude less than old rules. This
suggests a declining marginal usefulness per rule as EasyList accumulates more rules, possibly
because the most troublesome resources are already blocked. If a new rule was used during the
study, it was used an average of 0.65 times per day. Old rules were applied much more frequently,
6.14 times a day on average.

4.3.3 Impact of the age of rules. We also measure whether the age of a rule impacts its use. We
�nd that the age of a rule signi�cantly impacts the number of times rules are used. We present
these �ndings in two ways: graphically and statistically.
Figure 5 presents the distribution of the age of the rules present in EasyList, as well as the

average number of uses depending on the age of a rule. The distribution of the age of the rules
(black bars) shows that there are rules from all ages in EasyList. The important number of 5-
year-old rules is explained by the merge of the "Fanboy’s list", another popular �lter list, with
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Fig. 4. Distribution of the number of times rules were used during the 74 days of the experiment, on popular
(Alexa rank 1–5k) and unpopular (Alexa rank 5,001–1m).

EasyList in 2013. If we observe the average number of times rules are used in a day (grey bars),
we see that the most useful rules are old. This is caused by generic rules blocking URLs that
contained keywords such as "ads" or popular domains such as doubleclick.net. For example, the
rule .com/ads/$image,object,subdocument was added to EasyList in September 2010 and was
triggered 748, 330 times during the experiment. We did not observe a linear relationship between
the average use of a rule and its age.

Besides the graphical analysis, we also conduct statistic tests to determine whether the age of a
rule impact its use. We use the Kolmogorov-Smirnov test to compare the distribution of the number
of times rules are used depending on the duration they have been present in EasyList. For each
year i between 1 and 8, we compare the distribution of the number of times rules that have been
present i years in EasyList have been used with:

(1) the distribution of the number of times rules that have been present less than one year,
(2) the distribution of the number of times rules that have been present between i−1 and i

years.

For all the tests, we obtain p-values less than 10−5, which indicates that there are signi�cant
di�erences in the way rules are used depending on their age (Research Question 3).
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Fig. 5. The black bars represent the distribution of the age of the rules present in EasyList. The grey bars
represent the average time a rule is used per day against the time it has been added to EasyList.

4.4 Advertiser Reactions
EasyList helps users avoid online advertising. Advertisers and websites that rely on advertising
for their income do not want their content to be blocked and may try to circumvent rules in
EasyList. There are several ways an advertiser may do this. One option is to try to detect the use
of an adblocking tool [7]. Alternatively, the advertiser may manipulate the URLs that serve their
content, to prevent matching �lter rules. In this section, we measure how often, and in which ways,
advertisers responded to EasyList rules. We do not observe a statistically signi�cant reaction by
advertisers in general but we note common patterns in avoidance strategies among a subset of
advertisers (Research Question 5).

We measured advertiser reactions to EasyList rules through the following intuition: if a resource
changed URL more frequently after being blocked by EasyList than before, it suggests an advertiser
trying to evade EasyList. Similarly, if the number of times a resource was blocked spiked after the
EasyList addition, and then reverted to its pre-rule block-rate, that would also suggest advertiser
evasion.
We used this intuition through the following steps. First, we considered only rules that were

added during the measurement period, and which remained in EasyList for at least 14 days. Second,
we identi�ed resources that were blocked by these new rules and looked to see if the same resource
(as determined by the content’s hash), was served by di�erent URLs during the study. Third, we
�ltered out resources that were less than 50KB, to avoid resources that were trivially identical, like
common logos and tracking pixels. Fourth, we measured whether the number of URLs a resource
was served from changed signi�cantly before and after being blocked by EasyList.
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Fig. 6. Number of times resources are blocked or allowed a�er a rule is added to EasyList

Figure 6 presents the block and allow rates for resources a�ected by new rules. We did not �nd
any population-wide trends of advertisers modifying URLs to avoid EasyList. If advertisers were, in
general, successfully evading EasyList, we would observe a decrease in blocking over time. Block
rates did not though, in general, revert to pre-rule levels over time.

4.5 Evasion Strategies
In this subsection, we present a partial taxonomy of the strategies used by advertisers to avoid
EasyList rules. Figure 7 presents the number of times each evasion strategy was observed.

4.5.1 Changing Domains. Many advertisers changed the domains their resources were served from,
either by subtly modifying the domain names or by completely changing them through domain
generation algorithm style techniques. This happened 1,612 times and does not take into account
resources that were moved to the �rst party. For example, the URL https://c.betrad.com/geo/ba.js?
r170201 was blocked by the rule ||betrad.comˆ$third-party. The resource was moved to a new
domain, c.evidon.com, to avoid being blocked.

In total, resources were moved from 100 distinct domains to 157 distinct domains, representing a
total of 195 distinct combinations of domains. The twomost frequent transitions are resourcesmoved
from pagead2.googlesyndication.com to google.com and from cs03.etcodes.com to cs03.et-cod.com.
The former occurred 499 times and the latter 185 times. We observe that the advertiser changed
the domain that served the resources so that it looks the same when observed by a human but that
does not match the �lter anymore.
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Fig. 7. Number of times each strategy has been used during the experiment.

4.5.2 Moving Resources to the First Party. Advertisers avoided EasyList rules by moving resources
from third-party domains to the �rst party. It happened 84 times, among which 23 times resources
were moved to another sub-domain of the �rst party. For example, we observed the domain cnn.com
including resources from ssl.cdn.turner.com, which was blocked by the rule ||turner.comˆ*/ads/.
We then observed the same resource being served from cdn.cnn.com directly, which prevented the
resource from matching the ||turner.com domain in the �lter rule.

4.5.3 Removing Ad Keywords from URLs. Keywords such as ‘ads’ or ‘ad’ trigger �lter rules. We
observed 73 URLs where these keywords were simply removed. For example, the URL https:
//etherscan.io/images/ad/ubex-20.png was blocked by the rule /images/ad/*. To bypass the �lter
rule, the URL was changed to https://etherscan.io/images/gen/ubex-20.png.

4.5.4 Removing Image Dimensions from URLs. Some URLs contain parameters to specify the
dimension of the ad banners. These parameters also trigger �lter rules. Advertisers can evade these
rules by removing matching parameters from URLs. We observed 176 Evasions of this kind. For
example, https://s0.2mdn.net/dfp/.../lotto_kumulacja_160x600_009/images/lotto_swoosh.png was
blocked by the rule _160x600_. We observed an advertiser removing the dimension parameter
from their URLs to avoid being blocked.
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5 APPLICATIONS
In this section, we present two practical applications of the previous sections’ �ndings: �rst, an
optimized, reduced EasyList on resource constrained iOS devices, and second, a novel EasyList-
based �ltering strategy targeting desktop extensions, that provides nearly all of the blocking bene�ts
of full EasyList, but with signi�cantly improved performance.

5.1 Improving Content Blocking on iOS
We �rst present how content blocking in iOS di�ers from content blocking in other platforms.
Then, we run a benchmark that measures how the size of a �lter list impacts the time to launch a
content-blocking application on iOS, and how our �ndings could help to decrease this time.

5.1.1 Overview of Content Blocking on iOS. iOS and Safari use a di�erent strategy for content
blocking than other browsers 25. On most platforms, ad-blocking tools receive information about
each request, such as the request URL, the expected resource type, etc. The extension can then apply
whatever logic is desired to determine whether the request should be blocked. In most content
blocking systems, this results in a large number of regular expressions (or similar text patterns)
applied to the URL, along with some optimization to limit the number of rules that need to be
considered.
iOS and Safari (along with Google’s proposed Manifest v3 changes26) use a di�erent approach,

where extensions declare a static set URL patterns that should be blocked but do not execute the
rule application logic. This protects the user from malicious extensions (since extensions cannot
modify requests with malicious code), at the cost of requiring all rules be expressed in a format
that is less expressive than the EasyList format. The result is that EasyList is generally expanded
from EasyList’s compact rule format to a larger number of iOS-compatible rules.
Limitations. There are two relevant limitations in iOS’s blocking approach. First, iOS enforces a
limit of 50K rules. This limit is not in Apple’s documentation, but the main ad-blocking applications
report it 27, and we observe the same during testing. Since Easylist alone contains 40K network
rules, little room is left for either other popular lists (e.g. EasyPrivacy) or region speci�c EasyList
supplements (e.g. EasyList China). iOS’s restrictions thus limit the amount of protection users can
deploy.
This limit on the number of rules is particularly harmful to non-English speaking users, who

often need to rely on supplemental, region or language speci�c �lter lists, that are applied in
addition to EasyList. As EasyList itself is large enough to consume the iOS limit on �lter rules,
non-English users cannot use EasyList with their regional list, resulting in reduced protections [19].

Second, iOS compiles �lter rules into a binary format each time rules are updated. As we show in
the benchmark we conduct, users may have to wait for 14 seconds or more when a list composed
of 40K rules is compiled. This is particularly unacceptable when launching an app for the �rst time
when tricks like background compilation cannot be used to hide the cost from users.

5.1.2 Benchmark.

Approach.We use the �ndings of this work to decrease rule compilation cost (and increase the
ability of users to include other lists of rules) on iOS devices by only compiling �lter rules that are
likely to be useful, instead of the full set of 40k rules. We show that reducing EasyList to only its
useful rules provides a dramatically improved initial launch experience for users, and gives users

25https://developer.apple.com/documentation/safariservices/creating_a_content_blocker
26https://docs.google.com/document/d/1nPu6Wy4LWR66EFLeYInl3NzzhHzc-qnk4w4PX-0XMw8/edit
27https://help.getadblock.com/support/solutions/articles/6000099239-what-is-safari-content-blocking-,
https://www.ublock.org/blog/introducing-ublock-safari-12/
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Fig. 8. Average time to compile a filter list depending on device and size of the list.

more �exibility to apply additional �lter lists. The primary bene�ciaries of this optimization are
non-English speakers, and those on reduced capability mobile devices.
Evaluation Methodology. We �rst measure the costs of compiling di�erent sizes of �lter lists
on di�erent popular iOS devices. We generate lists that contain between 1,000 and 40,000 rules
randomly selected from the set of network and exception rules in EasyList. For each of the lists, we
use a fork of the “ab2cb” library 28 to convert the rules from the Adblock Plus format to the iOS
JSON format. Then, for each device and each list, we compile each iOS �lter list 5 times and report
the average compilation time.
Results. Figure 8 shows the average compilation time for each device and each selected list size.
The compilation times grows linearly with respect to the number of rules. While on average it
takes 0.24 second to compile a list composed of 1,000 rules on an iPhone X, it grows to 7.4 seconds
for a list composed of 40,000 rules.

Device kind also impacts compilation time. Compiling 40k rules on an iPhone 6s takes on average
11.62s, 4.2 seconds longer than on an iPhone X.

Thus, keeping only active rules has two main bene�ts in the case of ad-blockers running on iOS
and Safari. First, it allows users to enjoy the bene�ts of EasyList while remaining well under the
platform’s 50K rule-limit. Second, it dramatically decreases the required compilation time for the
�rst time the application is launched.
28https://github.com/brave/ab2cb
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5.2 Improving ad-blocking performance
We also propose an optimized strategy for applying EasyList that provides nearly all of the bene�ts
of traditional ad-blockers while improving �lter list application speed. We describe our technique in
three steps. First, we describe how current tools use EasyList for blocking (using AdBlock Plus, the
most popular of such tools 29, as a representative example). Second, we present a “straw” blocking
strategy that considers only frequently used �lter rules. Third, we propose a novel hybrid strategy
that achieves nearly the accuracy of existing techniques with the performance improvements of
the “straw” strategy.
Our hybrid approach achieves over 99% of the coverage of the current most popular EasyList

tool, but performs 62.5% faster. Because of the nature of the optimizations in this hybrid strategy,
we expect it could be applied to other EasyList consuming tools to achieve similar performance
improvements. This hybrid approach achieves this performance improvement at the cost of some
user privacy, since resources blocked by infrequently used EasyList rules would still be loaded once.
We note that this privacy “cost” is only paid once, while the performance improvement is ongoing,
and so might be an appealing trade o� to even privacy-sensitive users.
StrategyOne: Synchronous Full EasyList.Most EasyList tools decidewhether a network request
should be blocked as follows:
(1) Use hardcoded heuristics, such as not blocking top-level documents or requests coming from

non-web protocols. If any of these heuristics match, allow the request.
(2) Check the requested URL against the small number “exception” rules in EasyList. If any

“exception” rules match, allow the request.
(3) See if the requested URL matches any of the “network” rules in EasyList. If any “network”

rule matches, block the request.
(4) Otherwise, allow the request.
We note two performance impacting aspects of this strategy. First, it performs a large number

of unnecessary computation, since every “exception” and “network” rule in EasyList is applied to
outgoing request, even though the vast majority (over 90.16%) are very unlikely to be useful (again,
based on the measurements described in Section 4). Second, this wasteful computation adds delay
to a time-sensitive part of the system. These �lter checks are conducted synchronously, blocking
all outgoing network requests until all EasyList rules are considered.
Strategy Two: Synchronous Reduced List. Next, we describe a straw-man strategy, that im-
proves performance by only considering the 9.84% of rules expected to be useful. This strategy is
otherwise identical to strategy one and di�ers only in the number of EasyList rules considered.
Instead of applying all of EasyList’s 38,710 “network” and “exception” rules, this strategy only
evaluates the 4, 038 rules observed during the online measurements discussed in Section 4. The
expected trade-o� here is performance for coverage since resources that match rarely used �lters
will be allowed.
Strategy Three: Synchronous Reduced List, Asynchronous Complementary List. Finally,
we present our proposed blocking strategy, a hybrid strategy that achieves nearly the coverage that
full EasyList provides while achieving the performance improvements of the reduced list. Figure 9
outlines this hybrid strategy.
This strategy uses two steps:
(1) A synchronous, request-time matcher, that operates before each request is issued, but with a

reduced version of EasyList.

29https://data.�refox.com/dashboard/usage-behavior
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(2) An asynchronous background matcher, that applies the uncommon tail of EasyList, but only
when a request has been allowed by the previous step.

The �rst step is identical to strategy two. Every outgoing network request is intercepted and
blocked until the frequently-used subset of EasyList rules is considered. The step’s goal is to
minimize how long network requests are blocked, by minimizing the amount of synchronous work.
The result is that benign network requests complete more quickly than current blocking tools.

The second step applies the remaining, long-tail of EasyList rules, but at a less performance-
sensitive moment. If a network request is allowed by the �rst step, the request is issued, but the
browser continues checking the now-issued URL against the rest of EasyList. This continued
checking is done asynchronously so that it has minimal e�ect on the load time of the page.

If the asynchronous checker �nds any rules that match the URL of the now-issued request, that
rule is added to the set of rules applied by the synchronous matcher so that it will be quickly
blocked in the future.

The result of this hybrid strategy is that commonly blocked requests are blocked quicker (because
the synchronous blocking step is considering a smaller rule set), benign requests complete faster
(again, because of the reduced rule list used in the synchronous blocker), and rare-but-undesirable
URLs are adjusted to (because the asynchronous matcher moves matching �lter rules into the
synchronously-applied set).

5.2.1 Evaluation Methodology. We evaluated the performance of each strategy by implementing
them in AdBlock Plus for Chrome 30. In all strategies, we instrumented AdBlock Plus to measure
the time needed to evaluate each outgoing network request against EasyList (or the relevant subset
of EasyList). For the hybrid approach, we also added timing measurements to the asynchronous
step.
We evaluated each of the three blocking strategies against the same selection of popular and

unpopular websites discussed in Section 4. We conduct the crawl on an AWS T2 medium instance
with 2 virtual CPUs and 4GB of RAM. Since Chromium does not support extensions in headless
mode, 31 we use stock Chromium renderedwith XVFB, and automated the systemwith the Puppeteer
library 32. All experiments were conducted with caching disabled.
For each strategy we visited each of the 10K websites in our sample. We allowed each website

�ve seconds to respond and then allowed each website to execute for two seconds. The extension
measures the time taken by AdBlock Plus (modi�ed or stock) to decide whether to block each
network request on each page.

5.2.2 Performance of Blocking Strategies. Table 2 presents the results of applying the above evalua-
tion methodology against each of the three blocking strategies.

The �rst row presents measurements for the stock AdBlock Plus implementation, which uses a
synchronous blocking strategy for all of EasyList. Unsurprisingly, this strategy takes the longest
time to determine whether to block a network request. We note that this time is spent blocking
each network request, which greatly impacts page load time.
The second row shows the performance of the second strategy; reducing EasyList to its most

frequently used rules, and applying that reduced list synchronously. The result is faster performance,
at the cost of an increased false positive false negative rate. The number of network requests blocked
goes up because of “exception” pruned from EasyList. Privacy is also harmed, as nearly 18,000 more

30https://github.com/adblockplus/adblockpluschrome
31https://bugs.chromium.org/p/chromium/issues/detail?id=706008
32https://github.com/GoogleChrome/puppeteer
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Fig. 9. Overview of the proposed hybrid strategy.

Strategy Num rules
start

Num rules
end

Median eval time
per request (ms)

90th time
per request (ms)

Num requests
blocked

Num requests
exceptioned

Num 3rd parties
contacted

N

(1) Easylist sync 39,132 39,132 0.30 0.50 30,149 11,905 322,604
(2) Reduced list sync 3,259 3,259 0.10 0.30 30,611 2,508 340,301
(3) Hybrid combined 39,132 39,132 0.30 0.60 31,584 14,444 338,841
(3.1) Hybrid sync 3,259 3,445 0.20 0.30 31,446 14,396 -
(3.2) Hybrid async 35,873 35,687 0.20 0.30 138 48 -

Table 2. Performance and coverage comparison for three EasyList application strategies.

third-parties are contacted during the evaluation, a result of some “network” rules missing in the
reduced EasyList.
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The remaining rows present the evaluation of the hybrid strategy. Rows four and �ve describe
the synchronous and asynchronous modules of the hybrid strategy separately, while row three
presents the combined e�ect. The most signi�cant results of our evaluation are the following.

First, the synchronous module takes 0.21 ms on average to process a request. Perceived blocking
time is reduced (compared to stock AdBlock Plus) by 62.5% (Research Question 6). Second, the
hybrid strategy provides blocking coverage nearly identical to stock AdBlock Plus (> 99%), with
only 138 false negatives on 10, 000websites visited. The 48 “exception” rule errors do not impact the
user since the rules that would have been excepted were not added to EasyList. Third, the evaluation
shows the adaptive bene�t of the hybrid model. The hybrid approach initially applied 3,259 rules
synchronously, but after the 10,000 site evaluation, 186 rules from the uncommon async set were
added to the synchronous set.
Second, we note the asynchronous portion of the hybrid approach applies its 35K rules faster

than the reduced-list synchronous approach, which considers only 3,259 rules. This surprising
observation is due to the synchronous portion of the hybrid approach doing some work (e.g. what
kind of resource is being fetched) that can be reused in the asynchronous step.

Overall, we �nd that the hybrid approach is a successful, performant strategy. The hybrid strategy
considers only the subset of EasyList that is likely to be useful in the performance critical path,
and defers evaluating the less-likely-to-be-useful rules to a less critical decision point. The hybrid
approach achieves these improvements with a minimal e�ect on blocking accuracy, and at a small
(though not zero) privacy cost, on the order of one non-blocked resource per uncommonly used
�lter list rule.
Finally, we note that there are potential further performance improvements that might be

achieved by pushing the hybrid approach further, and starting each user with an empty set of
�lter rules. This would increase the privacy cost of the hybrid approach, since a larger number
of would-be-blocked resources would be fetched, but would result in an even smaller, further
optimized set of rules that tightly matched each users’ browsing patterns.

6 LIMITATIONS AND DISCUSSION
6.1 Web site selection generalizability
The �ndings in this study depend on having a sample of the web that generalizes to the types
of websites users visit and spend time on. We treat the Alexa 5K, along with a sampling of less
popular websites, as representative of typical browsing patterns. While we expect this set to be
a good representative of the web as a whole (largely because the highly skewed distribution of
website popularity means the most popular sites represent the majority of most user’s browsing
time), we note it here as a limitation, and that extending this work’s measurements beyond the
Alexa 5k would be valuable future work.

Additionally, this work considers each site’s landing page, and up to three sub-pages linked to
from the site’s landing page, as representative of the site’s content overall. If this is not the case,
and deeply nested pages have di�erent kinds and amounts of resources than higher-level pages, it
would reduce the generalizability of this work’s �ndings. We note this as an area for future work.

6.2 Web region and language generalizability
This work applies EasyList globally popular sites, as determined by the Alexa global rankings. This
choice was made because EasyList itself targets English and "global" sites. Other lists target others
languages and regions on the web. Some of these lists are maintained by the EasyList project 33,

33https://easylist.to/pages/other-supplementary-�lter-lists-and-easylist-variants.html
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others lists are created by other �ltering tools 34 or crowdsource e�orts 35. It would be interesting
future work to understand how EasyList performs on other regions of the web (as compared to
English and “global” sites), and how EasyList’s performance compares to region-and-language-
speci�c lists.

6.3 Automated measurement generalizability
All of our results were generated from automated crawls, which also may have a�ected how
generalizable our results are. It is possible that di�erent kinds of resources are fetched and so
di�erent parts of EasyList are used, when users interact with websites in particular ways, such as
logging in or using web-app like functionality. How generalizable automated crawl results are to
the browsing experiences of real users is a frequently acknowledged issue in measurement studies
(e.g. [20]), and one we hope the community can address with future work.

Additionally, all crawling done in this work was carried out from well known AWS IP addresses.
This means that the results may be a�ected by the kinds of anti-crawling techniques sometimes
deployed against Amazon IP addresses. This, in turn, could have a�ected the number and distribution
of ads observed during measurement. While this is a common limitation of this kind of web-scale
measurement, we note it as another limitation.

6.4 Relationship to filter list evasion
Many websites prefer for their included resources not be blocked by �lter lists, for reasons ranging
from monetization to anti-fraud e�orts. Some sites and advertisers attempt to evade �lter lists (and
other blocking tools). Some of these techniques are presented in Section 4.4, and others have been
detailed in other research and discussed in Section 7.4.
While, if e�ective, these evasion e�orts would would reduce the usefulness of �lter-list based

blocking, evasion e�orts are unlikely to be e�ective in the common case. First, advertisers and
trackers are constrained in their ability to evade �lter lists because frequently changing URLs
would break existing sites that have hard coded references to well known URLs. Second, frequently
changing URLs imposes a non-zero cost on advertisers and trackers by making caching di�cult,
and so increasing serving costs. Finally, though trackers may consider evading �lter lists with more
expensive techniques (e.g. domain generation algorithms, resource inlining, etc), many may be
hesitant to do so because, in the long term, more sophisticated e�orts will likely be defeated too,
since the client has the ultimate ability to choose what content to fetch and render, for reasons
described by Storey et. al. [21].

6.5 Varying resource blocking importance
Finally, our results consider every blocking action as equally useful. In our measurements, a rule
that blocks ten resources is implicitly ten times more useful than a rule that only blocks one request.
It is possible, though, that a less frequently used rule may be more bene�cial to the user than a
frequently used rule if the infrequently blocked rule is blocking a very malicious or performance
harming resource. While we expect the most severe, security harming resources are most commonly
dealt with through other blocking tools, such as SafeBrowsing 36, we acknowledge this limitation,
but treat the more general question of “how bene�cial is it to the user to block a given resource”
beyond the scope of this work.

34e.g. https://kb.adguard.com/en/general/adguard-ad-�lters
35e.g. https://�lterlists.com/
36https://safebrowsing.google.com/
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7 RELATED WORK
7.1 Online tracking
Recent studies document a growth of third-party tracking on the web [2, 10]. Yu et al. [23] found
an increase in analytics services and social widgets. Englehardt et al [2] showed tracking code on
more than 10% of the websites of the top Alexa 1M. Libert et al [12] showed that 180k pages of the
top 1M Alexa websites had cookies spawned by the DoubleClick domain, a behavioral advertising
company.

7.2 Defenses against tracking
The NoScript extension 37 enables to prevent JavaScript execution. While this approach blocks
trackers, it also breaks websites that use JavaScript for legitimate purposes. This trade-o� between
privacy and usability is important. Yu et al. [23] �nd that privacy tools that break legitimate websites
may lead to users deactivating such tools, harming user privacy. The most popular kind of tracking
protection is browser extensions such as Ghostery, Disconnect or uBlock origin, as well as browsers
such as Brave or Safari that enable to block third-party requests.
A variety of strategies have been proposed for identifying unwanted web resources. Privacy

Badger uses a learning-based approach. Iqbal et al. [8] also proposed a machine learning approach
that considers features extracted from HTML elements, HTTP requests, and JavaScript to determine
if a request should be blocked. Storey et al. [21] propose a visual recognition approach targeting
legally mandated advertising identi�ers. Yu et al [23] proposed a crowdsourced approach where
users collectively identify data elements that could be used to uniquely identify users. The majority
of anti-tracking and ad-blocking tools rely on �lter lists.

Di�erent studies [17] show that tracker blockers and ad-blockers are popular among the general
population. Malloy et al [13] showed that depending on the country, between 16% and 37% of the
Internet users had an ad-blocker installed. Mathur et al [14] found that most users of anti-tracking
tools use the tools to avoid advertising.

7.3 E�ectiveness of anti-tracking tools
Gervais et al. [4] quanti�ed the privacy provided by the main ad-blockers. They show that on
average, using an ad-blocker with the default con�guration reduce the number of third parties
loaded by 40%. Merzdovnik et al. [15] showed that rule-based approaches can outperform Privacy
Badger’s learning-based approach. They also show that extensions that rely on community-based
lists are less e�ective than extensions based on proprietary lists such as Disconnect or Ghostery
when used with the correct settings. Their study demonstrates that besides blocking trackers, most
of these extensions have a negligible CPU overhead. In some cases, it even leads to a decrease in
the overall CPU usage of the browser.

7.4 Maintaining filter lists
In order to keep up with new domains creating and domains changing their behavior, it is crucial to
maintain �lter lists. Because it is a cumbersome task and it needs to be done carefully not to break
websites, Gugelmann et al. [5] proposed an automated approach that relies on a set of web tra�c
features to identify privacy invasive services and thus help developers maintaining �lter lists.
Alrizah et al. [1] studied the related problem of how �lter lists maintainers detect and address

blocking errors, and how advertisers attempt circumvent �lter lists. They �nd that popular lists have
non-trivial false positive and false negative rates, and that these errors are exploited by attackers
(i.e. advertisers).
37https://noscript.net/
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Other researchers have also documented strategies advertisers use to evade blocking. Wang et
al [22] found advertisers randomizing HTML identi�ers and structure. Facebook has applied this
technique too 38. Adversity has also been discussed by recent studies on anti-ad-blockers [7, 16, 25],
i.e. scripts whose purpose is to detect and block ad-blockers to deliver advertising to more users.
Iqbal et al. [7] conducted a retrospective measurement study of anti ad-block �lter lists using the
Wayback machine, and found that 8.7% of popular sites have at one time used anti-adblocking
scripts.

8 CONCLUSION
This paper studies EasyList, the most popular �lter list used for blocking advertising and tracking
related content on the web. We �nd that the vast majority of rules in EasyList are rarely, if ever, used
in common browsing scenarios. We measure the number of these “dead weight” rules, and e�ect
on browser performance, through comparison with alternative, data-driven EasyList application
strategies. We �nd that by separating the wheat from the cha�, and identifying the small subset of
EasyList �lter rules that provide common bene�t for users, EasyList’s bene�ts can be e�ciently
enjoyed on performance constrained mobile devices. We also use these �ndings to propose an
alternate blocking strategy on desktops that improves performance by 62.5%, while capturing over
> 99% of the bene�t of EasyList.
More broadly, we hope this work will inform how similar crowdsourced security and privacy tools

are developed and maintained. As previous work [9] has identi�ed, such lists tend to accumulate
cruft as they accumulate new rules. Over time, the bene�t of such tools risks being outweighed by
the amount of dead weight pulled with them. We hope the �ndings in this work highlight the need
for regular pruning of these lists, to keep them lean and as helpful to users as possible.
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