
Mind theDelay: TheAdverse Effects of Delay-Based TCP onHTTP
Neil Agarwal

UCLA
neilagarwal@cs.ucla.edu

Matteo Varvello∗
Nokia, Bell Labs

matteo.varvello@nokia.com

Andrius Aucinas
Brave Software

aaucinas@brave.com

Fabián Bustamante
Northwestern University

fabianb@cs.northwestern.edu

Ravi Netravali
UCLA

ravi@cs.ucla.edu

ABSTRACT
The last three decades have seenmuch evolution inweb and network
protocols: amongst them, a transition fromHTTP/1.1 toHTTP/2 and
a shift from loss-based to delay-based TCP congestion control algo-
rithms.Thispaperargues that these twotrendscomeatoddswithone
another, ultimatelyhurtingwebperformance.Usinga controlled syn-
thetic study, we show how delay-based congestion control protocols
(e.g., BBR and CUBIC +Hybrid Slow Start) result in the underestima-
tionof the available congestionwindow inmobilenetworks, andhow
that dramatically hampers the effectiveness of HTTP/2. To quantify
the impact of such finding in the current web, we evolved the web
performance toolbox in twoways. Firstwe develop Igor, a client-side
TCP congestion control detection tool that can differentiate between
loss-based and delay-based algorithms by focusing on their behavior
during slow start. Second, we develop a Chromium patch which al-
lowsfine-grainedcontrol on theHTTPversion tobeusedperdomain.
Using these newweb performance tools, we analyze over 300 real
websites and find that 67% of sites relying solely on delay-based con-
gestion control algorithms have better performance with HTTP/1.1.

CCS CONCEPTS
• Networks→ Transport protocols; Application layer proto-
cols;Networkmeasurement.

KEYWORDS
HTTP, TCP, congestion control algorithm, protocol design, web
performance

ACMReference Format:
NeilAgarwal,MatteoVarvello,AndriusAucinas,FabiánBustamante, andRavi
Netravali. 2020. Mind the Delay: The Adverse Effects of Delay-Based TCP on
HTTP. In The 16th International Conference on emerging Networking EXper-
iments and Technologies (CoNEXT ’20), December 1–4, 2020, Barcelona, Spain.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3386367.3431299

∗Work partially done while at Brave Software.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT ’20, December 1–4, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7948-9/20/12.
https://doi.org/10.1145/3386367.3431299

1 INTRODUCTION
HTTP has underpinned web page loads for the past three decades,
defining both message formats as well as transmission patterns for
web transfers. Despite early concerns about ossification, the HTTP
protocol has seen considerable evolution in recent years [24, 26, 28,
50]. For example, HTTP/2 (H2) [19] debuted in 2014 and introduced
header compression, request multiplexing onto a single TCP connec-
tion, and the server push feature.More recently, the nascentHTTP/3
(H3) [20] proposal moves to UDP-based QUIC as the transport
protocol, tightly integrating with its streamlined handshakes.

In parallel to the HTTP evolution, components lower in the trans-
port stack have undergone an evolution of their own. In particular,
there has been a steady shift from loss-based congestion control
algorithms to delay-based variants, which rely on packet delay mea-
surements as a signal of congestion. Examples of these algorithms
are BBR [23], CUBIC’s Hybrid Slow Start [31], and YeAH [17].

When studied in isolation, each new HTTP- or transport-level
protocol’s features appear to deliver significant promise, with little
downside. For instance, Google reports that BBR offers considerable
improvement over CUBIC (in both throughput and quality-of-
experience metrics) [23]. Similarly, the request multiplexing feature
that H2 introduced alleviates head-of-line blocking and connection
setup overheads as compared to HTTP/1.1 (H1) [19].

As prior work has shown, there exists a complex interplay be-
tween these cross-stacknetworkprotocolswhichultimately governs
the performance of the applications that they support [22, 32, 50].
The focus of this paper is on understanding the fundamental
interplay between HTTP variants in use today and delay-based TCP
versions in the context of web page loads. This relationship is of
critical importance as HTTP and TCP variants continue to evolve
separately but operate together in the wild; we analyze it in detail,
highlighting aspects that have been glanced over in past studies.
In addressing this question, we make three contributions.

First, we perform controlled synthetic experiments to understand
the interplay between HTTP and TCP congestion control (CC)
across different network conditions and different protocol combi-
nations. We find that delay-based variants (BBR, YeAH, and CUBIC
+ Hybrid Slow Start) favor H1 for large page sizes and cellular-like
network conditions. We attribute the better performance of H1 to
the combination of two behaviors: 1) delay-based variants tend
to underestimate network capacity in jittery network conditions
such as on mobile, and 2) the multiple TCP connections used by
H1 allows it to make up for this underestimated capacity. These
findings are important because they go against the de facto HTTP
protocol mechanism used today which always opts for H2 when

https://doi.org/10.1145/3386367.3431299
https://doi.org/10.1145/3386367.3431299

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Neil Agarwal, Matteo Varvello, Andrius Aucinas, Fabián Bustamante, and Ravi Netravali

available. Further, the upcoming H3 is expected to suffer from the
same issue when coupled with delay-based congestion control.

Second, we extend the web performance toolbox to achieve
fine-grained visibility and control on the HTTP and TCP interplay in
thewild (i.e., on real page loads).We built and open sourced Igor [14],
a client-side tool which detects whether a domain/server runs a
loss-based or delay-based CC algorithm. The main novelty of Igor
is that it focuses on pre-loss behavior (during TCP slow start), and
is thus able to operate with small web objects, which is more than
often a necessity in today’s web. Next, we developed a Chromium
patch which enables fine-grained control on which HTTP versions
to use with each domain involved in a webpage load.

Third, we leverage the above tools to study the HTTP and TCP
interplay in the wild, i.e., 300 popular webpages and mobile-like
network conditions. With respect to the prevalence of delay-based
traffic,we show that over50%ofwebsites havemore than75%bytes
served via connections using delay-based CC.With respect to web
performance, we show that over 67% of websites relying solely on
delay-basedCChave better performancewithH1. Then, in a series of
deep-dive case studies,we deconstruct page loads to uncover howex-
actly this behavior playsout for realwebsites.Weverify this behavior
on severalwebpages, but alsofind that, despite thenegative interplay
betweenH2 and delay-basedTCPvariants, there are still caseswhere
H2 outperformsH1 due to the overheads introduced byHead of Line
(HOL) blocking and setting up multiple TLS connections.

2 EXPERIMENT SETUP/METHODOLOGY
In this section, we describe the testbed used in in §3 and §5.

ClientModule.We use the (Chromium-based) Brave browser [1]
to load webpages because of its built-in third-party tracker and ad
blocking. This reduces the non-determinism of page loading by
excluding traffic that is highly dependent on a user’s ad-matching
profile and allows us to focus on the primary content of the tested
web pages.We leverage Lighthouse [2] for HTTP data collection and
Chrome DevTools [3] to control the browser and log page load infor-
mation.We pair the data gleaned fromLighthousewith packet traces
captured by tcpdump [4] and parsed with tshark [5]. To decrypt
HTTPS traffic,we instrument the browser to record used SSL session
keys.With respect toDNS,wepreface each experimentwith a primer
which, among other things that we will discuss later, caches DNS
resolutions in /etc/hosts to guarantee consistent DNS resolutions
across comparative experiments involving the same website.

Network Module. To provide a configurable bridge between the
client module and the Internet, we build a generic module that
supports network emulation as well as multiple access networks.
We consider 4 network configurations:
fiber: low-latency and high-bandwidth fixed access provided by
a North American fiber link; average bandwidth of 80 Mbps, in both
directions, and latency of 5 ms as per fast.com.
continuous-slowdown: a synthetic network setting in which we
gradually increase network latency (atop the low-latency fiber
connection) by 15 ms every 100 ms up to a maximum of 300 ms.
Note that this is not intended to reflect a realistic network condition,

but was instead designed to trigger delay-based congestion control
mechanisms for our analysis.
jitter: a realistic network setting encountered mostly in mobile
networks where the network delay has high variability, e.g., due to
poor/variable signal conditions. Jitter is defined by the pair <mean,
stdev> and generated using dummynet [44] queues by repeatedly
changing the queue’s delay to a randomized onewith target jitter val-
ues (using a Box-Muller transform to generate normally-distributed
values fromLinux standard$RANDOM followinguniformdistribution).
Thismethodof generating jitter avoids packet reordering, differently
for example from TC’s method of adding per-packet delays [6]; thus
it better reflects latency fluctuations in cellular networks.
tethering: a real network setting involving a tethered mobile con-
nection between an Android device and the client module (running
on a modernMac). The mobile network is fromMint Mobile [7]), a
North American virtual mobile operator running atop of T-Mobile.

Server Module. To gain end-to-end traffic visibility for our syn-
thetic experiments, we host synthetic pages on a server located
in a university campus with, on average, 400 Mbps upload band-
width. This content is served by an Nginx server [8] (v1.19) with
H1 and H2 configured with TLS and GZIP compression. We instru-
ment the serverwitha toolbasedonss [9] toaugmentclient-side logs
with fine-grained server-side TCP information, e.g., congestion con-
trol algorithm, congestion window over time (cwnd), round trip time
(RTT), and packet loss data. We start with the default TCP configura-
tion in the Linux kernel 4.15 (i.e., TCPCUBICwithHybrid Slow Start
which we denote as hystart) and an initial cwnd of 10 packets. We
then investigate other common configurations observed in the wild:
CUBIC with regular slow start (CUBIC), BBR, YeAH, and Illinois.

3 HTTP&TCP INTERPLAY
When thinking about web performance, the interaction between
HTTP and TCP translates into how effectively each protocol
combination can move packets through a network. To illustrate this,
we look at a hypothetical scenario.

Assuming the default configuration of the Linux kernel (TCP
CUBIC with an initial cwnd of 10 packets) and a maximum
transmission unit (MTU) of 1.5 KB, we can derive that 15 KB of data
could be sent in the first round per connection. Therefore, during
the first round, H1 can transmit up to 90 KB of data per domain
(spread across 6 connections) while H2 can send only 15 KB of data
per domain (using 1 connection). With this in mind, we can consider
the effect of different object sizes.

Consider a smallwebobject, say 1KB.H1 is subject to head-of-line
blocking (HOL) and can send at most one object per connection at
a time. Thus, in the first round, H1 can send at most six 1 KB objects.
H2 is not subject to this and can send as many objects to fill up the
current congestion window (via multiplexing)—in this case, 15 1
KB objects. Therefore, H2 improves startup throughput by 2.5×.

Now consider a slightly larger object, say 15 KB. In this situation,
H1 is able to send six 15 KB objects while H2 can send only one
15 KB object. This results in H1 improving startup throughput by
6×. Here, the benefits of H1 are most pronounced during the slow
start phase of congestion control, where the TCP CC algorithm
probes the network to estimate the available congestion window.

Mind the Delay: The Adverse Effects of Delay-Based TCP on HTTP CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

[6,48,96,192]
extra-small

[6,48,96,192]
small

[6,48,96,192]
medium

[6,48,96,192]
large

[6,48,96,192]
extra-large

100

50

0

50

100

150

200

250

M
ed

ia
n

H1
-H

2S
pe

ed
In

de
x

(m
s)

Fiber

bbr
cubic
yeah
illinois
cubic-hystart

(a) fiber network connection

[6,
48

,96
,19

2]

ex
tra

-sm
all

[6,
48

,96
,19

2]

sm
all

[6,
48

,96
,19

2]

med
ium

[6,
48

,96
,19

2]

lar
ge

[6,
48

,96
,19

2]

ex
tra

-la
rge

[6,
48

,96
,19

2]

ex
tra

-la
rge

cw
nd

:20
[6,

48
,96

,19
2]

ex
tra

-la
rge

cw
nd

:40

12.5
10.0

7.5
5.0
2.5
0.0
2.5

M
ed

ia
n

H1
-H

2S
pe

ed
In

de
x

(s
ec

) Continuous-Slowdown

bbr
cubic
yeah
illinois
cubic-hystart

(b) continuous-slowdown network condition

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (sec)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Ra
tio

 H
TT

P/
2

CW
ND

 /
HT

TP
/1

.1
 C

W
ND

large-48
BBR
CUBIC
CUBIC HyStart

(c) cwnd ratio between H2 and H1 for large-48 in
continuous-slowdown

Figure 1: Difference inmedian SpeedIndex across 10 runs. Values > 0meanH2was faster thanH1, and vice-versa.

The longer the available congestion window is underestimated, the
more benefit H1 can provide. Moreover, a majority of web flows are
often short-lived (page loads) and therefore behavior during slow
start dramatically affects page load performance.

This observation becomes even more important when we
consider recent studies that show that delay-based congestion
control algorithms fail to accurately estimate the actual congestion
window in mobile, jittery network conditions [15, 16]. We speculate
that when delay-based congestion control algorithms are combined
with mobile networks, H1 can outperform H2. We recognize
that this does not always result in better H1 performance. The
overhead introduced by establishing TLS for each of H1’s multiple
connections along with any HOL blocking that occurs can still
exceed the benefits H1 achieves for delay-based variants.

3.1 Actualizing the Interplay
We perform controlled experiments to measure web performance
across a test matrix with different synthetic pages and protocol
configurations: HTTP version (H1, H2), TCP CC algorithm (CUBIC,
CUBIC-hystart, BBR, Illinois, YeAH), initial congestion window
(cwnd: default 10, up to 40 in some tests), number of objects (6, 48, 96,
192), and page size (40 KB, 140 KB, 550 KB, 2.3 MB, 9 MB). The syn-
thetic pageswe generate extend on theH2demos (e.g., Akamai’s [10]
and Cloudflare/gophertiles’s [11]) enabling fine-grained control on
the number of objects and their sizes. We report the difference in
median SpeedIndex [30], i.e., the average time at which visible parts
of the page are displayed, across 10 runs. We observe that variation
across runs was a result of random losses or aberrant Lighthouse
behavior and that using the median filtered out this noise.

We first run this experiment on the fiber network setting (Fig.
1(a)). We make few observations: 1) for pages smaller than 1 MB, as
the number of objects grows, H2 does better, 2) H1 is often slightly
faster with fewer and bigger objects, regardless of the TCP CC
algorithm— however, the relative speedup of either HTTP version
is barely noticeable (note the y-axis is in ms).

With a baseline established, we now focus on the
continuous-slowdown network setting (Fig. 1(b)). Here, the
goal is to expose the unique behavior of delay-based CC algorithms.
First, we see that H2 tends to outperform H1 as the number of
objects increases. This is well understood [36] and can be attributed
to H2 multiplexing reducing HOL blocking. Furthermore, this is
the reason for both protocols performing similarly with just 6

objects before they get too large: HOL blocking has little impact
on H1 because the browser opens 6 connections simultaneously.

As webpages get bigger (large: 2.3 MB and extra-large: 9 MB), H1
tends to outperform H2 in presence of delay-based CC algorithms.
This is because more time is needed to download larger pages, thus
increasing the chance of the delay-based portion of theCC algorithm
to be triggered and rate limit the transmission. While this impacts
both H1 and H2, the latter ends up suffering more due to the single
TCP connection. Furthermore, the right side of the dashed line in
the figure shows the impact of a larger initial cwnd (20 and 40) at the
sender. The rationale of these experiments is that by increasing such
window, it decreases the amount of time spent in the delay-based
portion of the CC algorithm. The figure indeed shows improved
SpeedIndex (lower negative delta) for H2 when focusing on both
YeAH and CUBIC-hystart, but H1’s performance edge is confirmed.
No improvement or specific trend is observed for BBR. Note that
SpeedIndexgetsquitenoisyathighvalues (e.g., tensof seconds forH2
in this scenario) which is the main reason of the differences between
SpeedIndex valuesmeasured at different cwnd and number of objects
values. Although not shown due to space limitations, more stable re-
sults across theseparameters areobservedwhen focusingonOnLoad,
i.e., the time when the browser considers the page as fully loaded.

Fig. 1(c) visualizes the impact of delay-based CC algorithms on
the cwnd using the server-side view for the large-48 example.With
hystart, H2 cwnd quickly drops to 0.25 of the total cwnd across
H1 connections, resulting in slower transfer. On the other hand, the
singleH2 CUBIC connection starts slow, but quickly exceeds the total
H1 congestion window.We note that SI indicates an earlier time in
the page load as compared to when network traffic stops, e.g., with
CUBICmedian SI was 655 ms and 719 ms for H2 and H1 respectively.
Taken together, these results illustrate the tension between HOL
blocking affecting H1 and lower bandwidth utilization by delay-
based TCP versions affecting H2.

Last but not least, we verified the existence of this effect via
tethering over 12 different physical locations.We only focus on the
large-48 example, and hystart to bound the experiment duration.
For each location, we load the synthetic website 3 times using both
H1 and H2, for a total of 72 runs. In addition to SpeedIndex, we also
report OnLoad, and FirstMeaningfulPaint, or the time it takes for
a page’s primary content to appear on the screen.

Fig. 2(b) shows, for each web performance metric, the CDF of the
delta between H1 and H2. The figure shows that H1 outperforms

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Neil Agarwal, Matteo Varvello, Andrius Aucinas, Fabián Bustamante, and Ravi Netravali

H2 for about 75−80% of the runs if we consider SpeedIndex and
OnLoad, respectively. This implies that,most of the time, the network
conditions were such to trigger hystart and leave some bandwidth
unused forH2.When focusing on FirstMeaningfulPaint, we observe a
more split result. This happens for two reasons: 1) hystart requires
several RTTs to manifest its behavior, and 2) H1 pays an extra cost
to set up multiple TLS connections.

3.2 Wait,What About HTTP/3?
While this paper considers H1 andH2 (as they represent 92.5% of the
currentweb traffic [13]),HTTP/3 (H3) is actively under development.
Because of its infancy, both protocol and implementation wise, we
have not conducted experiments with H3. However, we hypothesize
that the adverse behavior we have observed with H2 persists with
H3. H3 uses the UDP-based QUIC as its transport protocol, offering
benefits of stream-multiplexing, low-latency connection estab-
lishment, and improved security, amongst others [33]. Although
H3 is composed of multiple QUIC streams per domain instead
of multiple TCP connections per domain, there remains a single
logical connection per domain. Thus, faced with an underestimated
congestion window, H3 will likely suffer similarly to H2 if coupled
with delay-based CC algorithms.

4 EVOLVING THEWEB PERF. TOOLBOX
The previous section highlights that server-side network stack
configurations play an important role on HTTP performance.
A more subtle outcome is that the multi-domain nature of real
webpages implies the potential for diverse TCP CC algorithms
to be used concurrently during a web page load, complicating
HTTP performance analysis. Existing measurement tools for web
performance fall short in offering the fine-grained view and control
of such information. We address this limitation in this section.

4.1 Extra Visibility with Igor
Relying on server access to performwebmeasurements and protocol
development is impractical. Gordon [38] is, to the best of our
knowledge, the only modern tool for fingerprinting TCP CC in the
wild which is also open source. We have extensively tested Gordon,
but we had to dismiss it for two reasons: 1) low accuracy in presence
of small objects (Gordon requires objects > 160KB), and 2) it does
not identify hystart since it leverages post-loss TCP behavior for
detection (hystart’s behavior only manifests pre-loss).

To fill this gap we built Igor, a tool which extends Gordon,
focusing on pre-loss TCP behavior. Rather than detectingwhich TCP
version is running at the server, it differentiates between delay-based
and loss-based algorithms, since our synthetic results indicate that
this property has the largest impact on HTTP performance. This
question can be answered by focusing on slow-start only, and solves
the limitations of Gordon since slow-start captures hystart and
can operate on smaller objects.

At a high level, Igor works as follows. Given a target website
𝑊 , it first loads𝑊 using the client module from our testbed (§2),
and derives the 𝑁 contacted domains along with their IP addresses,
percentage of traffic contributed to the webpage, and biggest object
served. Next, it proceeds with testing slow start for each of the 𝑁
biggest objects identified. This entails retrieving each object via an

emulated bottleneck associated with a large queue, causing ACKs to
be progressively delayed, thereby triggering delay-based algorithms.
We use dummynet [44] to introduce a pipe between a curl client and
server. The pipe uses (< bandwidth, latency, queue-length>) to force
the queue to start filling up quickly, i.e.,within the first RTT. At this
point, if the server runs a delay-based version of TCP, it will quickly
slow down, e.g., within N RTTs depending on each algorithm,
avoiding queue buildups that would result in packet drops. In
contrast, loss-based TCP algorithms would result in the opposite
behavior, enabling straightforward differentiation between the two.

To demonstrate the merit of Igor’s approach, Fig. 2(a) shows
an example when fetching a 160KB file using a 500B Maximum
Transmission Unit (MTU) from a server we control. At the server,
we run CUBIC with hystart on (left) and off (right). The figure
shows both the output of the dummynet queue sampling (50 ms
frequency, max queue length of 100 packets, dashed line) along with
the ground truth cwnd collected at the server (4 ms frequency, via
ss [9], solid line). Between 0 and 0.5 seconds, the two algorithms
behave the same, i.e., regular slow start quickly building up a cwnd of
about 20-30 packets. At this point, packets are piling up in the queue
(see dashed lines, 20% of the 100-packets queue is already occupied)
causing ACKs to be delayed. With hystart (left plot), the TCP
congestion control slows downwhile regular slow start (right plot)
keeps increasing its window (doubling across an increasing RTT,
peaking at 1 second) until the queue is full (100 packets) and a packet
is dropped; the delay between when the first packet is dropped from
the queue (t=1.5sec) and when the first loss is recorded (t=2.5sec)
is due to the time needed for three consecutive duplicated ACKs.

Next,webenchmark Igorwithrespect to themostutilizedTCPver-
sions in thewild (according to [38]):BBR,CUBIC,YeAH, andIllinois,
treating CUBIC with HyStart as a separate variant. Focusing on
multipleMTU settings and object sizes, we analyze how the different
mechanisms fill up the queue and make key observations (Table 1).
First, delay-based algorithms (with the exception of YeAHwhich we
will discuss below) rarely occupy more than 30% of the dummynet
queue, i.e., only with 320KB object and hystart Conversely, loss
based algorithms tend to fill the queue quickly (on average in about

Table 1: Igor’s queue occupation over time for variable object
sizes [40,80,160,320]KB, MTU values [500,1500]B, and TCP
versions (BBR, CUBIC, YeAH, Illinois, CUBIC+HyStart).

Protocol Object Size
40KB 80KB 160KB 320KB

Max
Queue

Time
To
Max

Max
Queue

Time
To
Max

Max
Queue

Time
To
Max

Max
Queue

Time
To
Max

500BMTU

BBR 20 0.3 20 0.7 20 0.7 30 0.8
CUBIC 40 0.8 90 1.3 100 1.4 100 1.5
YeAH 40 0.8 80 1.2 90 1.3 90 1.3
Illinois 40 0.8 80 1.2 100 1.5 100 1.4
HyStart 20 0.8 20 0.8 30 3 80 6.4

1,500BMTU

BBR 10 0.6 20 0.6 20 0.6 20 0.6
CUBIC 20 0.6 50 1 80 1.1
YeAH 10 0.5 20 0.6 50 0.8 80 1.2
Illinois 20 0.6 50 0.9 80 1.2
HyStart 10 0.5 20 0.6 40 0.8 40 0.8

Mind the Delay: The Adverse Effects of Delay-Based TCP on HTTP CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

0 1 2 3 4 5
Time (sec)

0

10

20

30

40

CW
ND

/Q
ue

ue
 L

en
gt

h
(#

)

SS
DUMMYNET

0 1 2 3 4 5
Time (sec)

0

50

100

150

200

First
Drop

(a) (b)

1000

500

0

500

1000

0 20 40 60 80 100
3000

% Bytes Served Over Delay-Based TCP CC Algo

H1
-H

2
SI

 o
f M

ed
ia

n
Ru

n
(m

s)

https://www.epa.gov/ (530 ms)
https://www.surveymonkey.com/ (-621 ms)
https://www.360.cn/ (-2911 ms)
https://www.pinterest.com/ (-168 ms) (HTTPX)
https://www.homedepot.com/ (219 ms) (HTTPX)

(c)
Figure 2: (a) Ground truth cwnd (SS, solid) vs Dummynet queue sampling (Dummynet, dashed). Hystart (Left) vs Slow-start (Right). MTU=500B,
Object=160KB; (b) CDF of FMP/SI/PLT for (large, 48, cubic-hystart) measured from 12 diff. physical locations on mobile; (c) Bytes Served Over
Delay-Based TCPCCAlgo for Tranco Top 300Websites

1.5 seconds) before queue overflow causes packet losses leading to
slowdown. Second, a defaultMTU (1,500B)makes the protocols hard
to distinguish and should be avoided for this purpose. Small MTU,
on the other hand, increase the duration of a test. Finally, hystart
ends up with many packets in the queue given sufficiently large
objects and enough time to grow cwnd after the slow-start phase.

Based on the observations, Igor uses a simple heuristic to
distinguish between loss-based and delay-based algorithms. If a loss
is detected within the first two seconds, the algorithm is labeled as
loss-based; the opposite behavior implies that it is delay-based. We
further introduce the label too-small-to-judge in presence of objects
smaller than 50KB, to be conservative. By default, Igor uses a 500
MTU which it lowers to 100 for objects smaller than 100KB and it
increases to 1,500 for objects bigger than 1MB. Note that in this test,
the physical RTT was about 30 ms (padded to 100ms as explained
below) and results can change in the presence of different RTTs.
However, given that queue-based delays dominate, e.g., reaching up
to 1 second at full queue capacity, we observe minimal RTT-induced
impact. Still, we normalize the RTT to the next 50 with a minimum
of 100ms, e.g., padding a measured 113ms to 150ms.

Compared to Gordon, Igor allows to detect hystart and to distin-
guish loss-based versus delay-based CC algorithms in the presence
of much smaller objects, down to 50KB from 160KB for Gordon.
Further, while running Gordon on real webpages, we measured a
high fraction of unknown, equivalent of Igor’s too-small-to-judge:
82% for objects smaller than the recommended 160KB, but still 28%
for objects between 160 and 300KB, as well as bigger than 300KB.

Last but not least, we confirm that YeAH behaves mostly as a
loss-based algorithm and it thus would be mostly mislabeled by
our heuristic. This is because YeAH uses changes in packet delay to
estimate packet queue size, however until the estimated queue size
reaches 80 it uses STCP [34] rule to aggressively increase congestion
window size (fast phase). Although the queue size is a configurable
parameter of the algorithm, the current kernel implementationdoes
not allow for its tuning. Due to dummynet’s maximum queue size
of 100, Igor is not able to robustly distinguish between YeAH and the
loss-based STCP its fast phase is based on. This can be improved by
recompiling dummynet, and the kernel module for the kernel-level
packet handling, but a bigger queue would impact our overall detec-
tion heuristic and also increase the minimum packet size supported

by Igor. We thus opted to accept potential mislabeling for YeAH
given its limited usage in the wild (about 5.5% according to [38]).

4.2 Fine-GrainedHTTPControl
Chromium-based browsers (like Brave) can be run with H2 disabled
using the –disable-http2 flag. This flag disables H2 completely,
i.e., for both direct traffic to a website and traffic to external websites
embedded on it. This is achieved by not announcing H2 support
via the Application Layer Protocol Negotiation (ALPN) [27] TLS
extension, an externally visible marker for the application-layer
protocol associated with the TLS connection.

The above flag only allows a coarse comparison between HTTP
protocols. We extended the net Chromium library [29] – which
Brave relies upon – to only disable H2 support for a specific
set of domains. We implemented this functionality as patch of
the Chromium’s code, thus applicable to all Chromium-based
browsers. The modified browser takes a configuration flag
–disable-http2-per-urlwhich accepts as input a list of comma
separated domains for which to disable H2.

5 EMPLOYING THE TOOL BOX
In this section, we experimentwith the new featureswe have built to
evolve the web performance toolbox. We integrate Igor in our client
module (see §3), and specifically with the (DNS) primer. For each
discovered domain during a webpage load, the primer identifies the
biggest object and uses Igor to identify whether its server uses a
loss-based or delay-based TCP CC. Next, we use this information
to control which protocol (H1 or H2) to be used per domain. We test
the top 300 websites in the Tranco list [35] focusing on the jitter
scenario, which is representative of realistic mobile networks but
may challenge algorithms sensitive to delay variations. For the
jitter, we use 50ms as mean, and a stdev of 70ms which is common
in North American cellular networks [53]. Bandwidth is capped to
40Mbps in both directions, with no additional packet loss.

Fig. 2(c) shows the percentage of bytes served over a delay-based
TCP CC versus the Speed Index delta of the median of 3 runs, for
Tranco top 300 sites [12]. Each dot refers to (H1 – H2), but we also
show two examples of HTTPX, i.e., a mix where we only turn off
H2 for delay-based domains. Regarding the prevalence of delay-
based traffic, the figure shows two interesting clusters at 0% (fully

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Neil Agarwal, Matteo Varvello, Andrius Aucinas, Fabián Bustamante, and Ravi Netravali

loss-based) and around 90−100% (almost full delay-based). These
two clusters cover 20% and 34% of the 300 sites, with the remainder
having a more complex TCPmix, uniformly split from 10−90%.

With respect to performance, the analysis is more complex. Over-
all, for loss-based algorithms H2 outperforms H1 65% of the time.
This result finds confirmation in previous works [36], which likely
mostly focus on loss-based TCP CC. However, there are cases where
H1 outperforms H2 significantly (■) which require a more careful
investigation. As the prevalence of delay-based traffic increases, the
result is more mixed. While no crystal clear trend arises, we can see
that H1 becomes more competitive as the fraction of traffic served
via delay-based CC increases. The plot also highlights two scenarios
where theusageofHTTPXcanboth improve and reduce performance.
Finally, the last cluster is where we expect H1 to shine the most, and
indeed it does. In fact,when100%of bytes are servedby adelay-based
variant,H1performs better 67%of the time.However, theweb is com-
plex and we can still find many examples where H2 is significantly
faster than H1 despite these adversarial conditions. We discuss one
very interesting example (⋆) in the following subsection.

5.1 Case Studies
In addition to the extra features we have built, we also argue that
web/http measurements largely benefit from client-side TCP traces.
Our client module exports a browser SSL session keys to decrypt
pcap traces, and then builds a mapping between devtools and TCP
data, e.g., bytes received, RTT, and losses. The tool further visualizes
the time evolution of the dependency graph, and it has proven quite
useful in isolating specific behaviors, some ofwhichwe report below.
https://www.epa.gov/ For this site, SI is triggered at 1,905 ms on
H1 and 1,375 ms on H2 (⋆ in Fig. 2(c)). All 75 resources loaded are
served by www.epa.gov which Igor has classified as delay-based.
This example demonstrates that although every byte was served
through a delay-based TCPCCalgorithm,H1 is not always favorable
(in fact, here H2 outperforms H1 by 530 ms). Through a closer look
at how the resources were made known, requested, and loaded over
time, we can see that H1 was heavily afflicted by HOL blocking.
Therefore, any benefits provided by H1’s multiple connections were
surpassed by the delay induced by HOL blocking.
https://www.surveymonkey.com/ SI triggered at 1,866 ms on
H1 and 2,487 ms on H2 (▲ in Fig. 2(c)). Here, over 90% of bytes
from https://www.surveymonkey.com/ were classified by Igor as a
delay-based variant. After the index page is loaded, 4 resources are
first requested (100K, 115KB, 6KB, 322KB). In this example, those 4
(mostly large) resources are done loading by 769 ms in H1 and 1,043
ms in H2. This is a classic example of H2 underutilizing available
bandwidth as a result of an underestimation of network congestion
by a delay-based TCP CC algorithm.
https://www.360.cn/Here, SI triggered at 6,167ms onH1 and 9,078
ms on H2 (■ in Fig. 2(c)). For this website, 0% percent of bytes are
served by a delay-based variant. Despite this, H1 surpasses H2 by
over 300ms.We took a closer look and using the RTTmeasurements
and thenumberof losses recordedduringourexperiments,wediscov-
ered that the average RTT to this websitewas 124ms and on average,
7 losses were detected. Considering that this website was based in
a geographically far location (the .cn TLD corresponds to China),

it is very reasonable to expect high RTTs and a lossy environment.
As a result of these network conditions, H1’s multiple connections
improve robustness against losses and load resources much faster.

6 RELATEDWORK
Web Performance Studies The development of HTTP and TCP
over the last 3 decades has given way to a number of performance
studies onHTTP [21, 24, 28, 41, 50–52] and TCP [18, 25, 26, 37, 43, 46,
48, 49]. For example, Wang et al. study the impact of SPDY on web
performance, concluding that SPDYdoesnot definitively outperform
H1 [50]. Butkiewicz et al. demonstrate how one can dynamically
reprioritize web content to improve overall user experience [21]. In
doing so, theydevelopamodel to estimate the load timeof awebpage.
Flach et al. analyze TCP connections from clients to Google services,
investigating the impact of losses and then propose and evaluate
faster loss recover methods [26]. Prior work has also demonstrated
the strong interplay between HTTP and TCP [22, 32, 40]. For exam-
ple, Cao et al. build an analytical model based on the TCP congestion
control algorithm to estimate TCP throughput [22]. They also
explore prediction onH1 vs. H2 in a limited synthetic setting. Naseer
et al. introduce Configtron, a tool to optimize network stack config-
urations on a server [40].While we build on these prior findings, the
primary focus of our paper is on understanding the performance con-
sequences of the parallel (and disconnected) evolution of TCP and
HTTP protocols, with a focus on recent delay-based CC algorithms.
This interplay has not been studied in detail by the aforementioned
prior studies, and is of increasing importance given the prevalence
of scenarios in which these protocols operate concurrently.

Inferring Server-Side TCP Settings A number of past studies
developed various methods to infer congestion control mechanisms
from just the client [38, 39, 42, 45, 47]. However, these mechanisms
either did not realize into usable tools or failed to differentiate
between delay-based variants that arise during TCP slow start (§4.1).
We found the latter paramount in today’s web where many domains
only serve quite small objects, for which TCP slow start is the only
behavior we can study. These observations have motivated our
development of Igor which we have also open sourced [14].

7 CONCLUSION
This paper highlights how the divergence in network protocol
evolution across the stack—the transition to a single multiplexed
connection in HTTP and a shift from loss-based to delay-based
congestion control algorithms in TCP—has adverse effects on web
page load times. We demonstrate this behavior with in-lab exper-
iments, which motivate the deployment of a newweb performance
toolbox characterized by fine-grained visibility and control on the
HTTP/TCP interplay. By testing 300 popular webpages, we show
that 67%ofwebsites relying solely ondelay-based congestion control
havebetterperformancewithHTTP/1.1 thanHTTP/2, nowadays the
de facto standardprotocol adopted in theweb.These resultshighlight
the importance of co-design between cross-stack network protocols.

Acknowledgements. We thank Pradeep Dogga and the anony-
mous CoNEXT reviewers for their valuable feedback. This work
was partially supported by NSF grant CNS-1943621.

Mind the Delay: The Adverse Effects of Delay-Based TCP on HTTP CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

REFERENCES
[1] https://brave.com/.
[2] https://developers.google.com/web/tools/lighthouse.
[3] https://developers.google.com/web/tools/chrome-devtools/.
[4] https://www.tcpdump.org/2.
[5] https://www.wireshark.org/docs/man-pages/tshark.html.
[6] https://man7.org/linux/man-pages/man8/tc.8.html.
[7] https://www.mintmobile.com/.
[8] https://www.nginx.com/.
[9] https://linux.die.net/man/8/ss.
[10] https://http2.akamai.com/demo.
[11] https://http2.golang.org/gophertiles.
[12] https://tranco-list.eu/list/6W9X.
[13] Usage statistics ofHTTP/3 forwebsites. https://w3techs.com/technologies/details/

ce-http3.
[14] Web performance toolbox. https://github.com/svarvel/web-perf-toolbox, 2020.

Accessed on 10.23.2020.
[15] E. Atxutegi, Å. Arvidsson, F. Liberal, K. J. Grinnemo, and A. Brunstrom. TCP

performance over current cellular access: A comprehensive analysis. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), LNCS 10768:371–400, 2018.

[16] E. Atxutegi, F. Liberal, K.-J. Grinnemo, A. Brunstrom, Å. Arvidsson, and R. Robert.
Tcp behaviour in lte: impact of flow start-up and mobility. In 2016 9th IFIPWireless
and Mobile Networking Conference (WMNC), pages 73–80. IEEE, 2016.

[17] A. Baiocchi, A. P. Castellani, and F. Vacirca. Yeah-tcp: yet another highspeed tcp.
In Proc. PFLDnet, volume 7, pages 37–42, 2007.

[18] W. Bao, V. W. Wong, and V. C. Leung. A model for steady state throughput of
tcp cubic. In 2010 IEEE Global Telecommunications Conference GLOBECOM 2010,
pages 1–6. IEEE, 2010.

[19] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Protocol Version 2
(HTTP/2). RFC 7540, RFC Editor, May 2015.

[20] M. Bishop. Hypertext Transfer Protocol Version 3 (HTTP/3). Internet-Draft draft-
ietf-quic-http-29, Internet Engineering Task Force, June 2020. Work in Progress.

[21] M. Butkiewicz, H. V. Madhyastha, and V. Sekar. Understanding website com-
plexity: measurements, metrics, and implications. In Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement conference, pages 313–328, 2011.

[22] Y. Cao, J. Nejati, A. Balasubramanian, and A. Gandhi. Econ: Modeling the network
to improve application performance. In Proceedings of the Internet Measurement
Conference, pages 365–378, 2019.

[23] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson. Bbr:
Congestion-based congestion control. Queue, 14(5):20–53, 2016.

[24] H. De Saxce, I. Oprescu, and Y. Chen. Is HTTP/2 really faster than HTTP/1.1?
Proceedings - IEEE INFOCOM, 2015-Augus:293–299, 2015.

[25] R. Dunaytsev, Y. Koucheryavy, and J. Harju. Tcp newreno throughput in the
presence of correlated losses: The slow-but-steady variant. In Proceedings IEEE
INFOCOM 2006. 25TH IEEE International Conference on Computer Communications,
pages 1–6. IEEE, 2006.

[26] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng, A. Jain,
S. Hao, E. Katz-Bassett, and R. Govindan. Reducing web latency: the virtue
of gentle aggression. In Proceedings of the ACM SIGCOMM 2013 conference on
SIGCOMM, pages 159–170, 2013.

[27] S. Friedl, A. Popov, A. Langley, and E. Stephan. Transport layer security (tls),
application-layer protocol negotiation extension, 2014.

[28] U. Goel, M. Steiner, M. P. Wittie, S. Ludin, and M. Flack. Domain-Sharding for
Faster HTTP/2 in Lossy Cellular Networks. 2017.

[29] Google. net - chromium/src.git. Accessed on 01.23.2020.
[30] Google. Speed index. https://developers.google.com/web/tools/lighthouse/

audits/speed-index, 2020. Accessed on 03.22.2020.
[31] S. Ha and I. Rhee. Taming the elephants: New tcp slow start. Computer Networks,

55(9):2092–2110, 2011.

[32] J. Heidemann, K. Obraczka, and J. Touch. Modeling the performance of http over
several transport protocols. IEEE/ACM transactions on networking, 5(5):616–630,
1997.

[33] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and Secure
Transport. Internet-Draft draft-ietf-quic-transport-31, Internet Engineering Task
Force, Sept. 2020. Work in Progress.

[34] T. Kelly. Scalable tcp: Improving performance in highspeed wide area networks.
ACM SIGCOMM computer communication Review, 33(2):83–91, 2003.

[35] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, andW. Joosen.
Tranco: A research-oriented top sites ranking hardened against manipulation. In
Proceedings of the 26thAnnual Network andDistributed System Security Symposium,
NDSS 2019, Feb. 2019.

[36] Y. Liu, Y. Ma, X. Liu, and G. Huang. Can HTTP/2 really help web performance
on smartphones? Proceedings - 2016 IEEE International Conference on Services
Computing, SCC 2016, pages 219–226, 2016.

[37] S. H. Low, L. L. Peterson, and L. Wang. Understanding tcp vegas: a duality model.
Journal of the ACM (JACM), 49(2):207–235, 2002.

[38] A. Mishra, X. Sun, A. Jain, S. Pande, R. Joshi, and B. Leong. The Great Internet
TCP Congestion Control Census. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 3(3):1–24, 2019.

[39] U. Naseer and T. Benson. Inspectorgadget: Inferring network protocol config-
uration for web services. In 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pages 1624–1629. IEEE, 2018.

[40] U. Naseer and T. Benson. Configtron: Tackling Network Diversity with
Heterogeneous Configurations. arXiv preprint, pages 1–26, 2019.

[41] J. Padhye and H. F. Nielsen. A comparison of spdy and http performance. 2012.
[42] J. Pahdye and S. Floyd. On inferring TCP behavior. Computer Communication

Review, 31(4):287–298, 2001.
[43] N. Parvez, A. Mahanti, and C. Williamson. An analytic throughput model for

tcp newreno. IEEE/ACM Transactions on Networking, 18(2):448–461, 2009.
[44] L. Rizzo. Dummynet: A simple approach to the evaluation of network protocols.

SIGCOMMComput. Commun. Rev., 27(1):31–41, Jan. 1997.
[45] J. Rüth, C. Bormann, and O. Hohlfeld. Large-scale scanning of TCP’s initial

window. Proceedings of the ACM SIGCOMM Internet Measurement Conference,
IMC, Part F1319:304–310, 2017.

[46] C. Samios and M. K. Vernon. Modeling the throughput of tcp vegas. ACM
SIGMETRICS Performance Evaluation Review, 31(1):71–81, 2003.

[47] C. Sander, J. Rüth, O. Hohlfeld, and K. Wehrle. Deepcci: Deep learning-based
passive congestion control identification. NetAI 2019 - Proceedings of the 2019
ACM SIGCOMMWorkshop on Network Meets AI and ML, Part of SIGCOMM 2019,
pages 37–43, 2019.

[48] B. Sikdar, S. Kalyanaraman, and K. S. Vastola. Analytic models for the latency
and steady-state throughput of tcp tahoe, reno, and sack. IEEE/ACM Transactions
On Networking, 11(6):959–971, 2003.

[49] J.Wang, D. X.Wei, and S. H. Low. Modelling and stability of fast tcp. In Proceedings
IEEE 24th Annual Joint Conference of the IEEE Computer and Communications
Societies., volume 2, pages 938–948. IEEE, 2005.

[50] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall. How
speedy is SPDY? Proceedings of the 11th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2014, pages 387–399, 2014.

[51] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. Why are web browsers slow
on smartphones? In Proceedings of the 12th Workshop on Mobile Computing
Systems and Applications, HotMobile ’11, page 91–96, New York, NY, USA, 2011.
Association for Computing Machinery.

[52] K. Zarifis, M. Holland, M. Jain, E. Katz-Bassett, and R. Govindan. Modeling
HTTP/2 speed fromHTTP/1 traces. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
9631:233–247, 2016.

[53] S. Zhang,W. Li, D.Wu, B. Jin, D. Gao, Y.Wang, R. K. Chang, and R. K. Mok. An em-
pirical study of mobile network behavior and application performance in the wild.
Proceedings of the International Symposium on Quality of Service, IWQoS 2019, 2019.

https://brave.com/
https://developers.google.com/web/tools/lighthouse
https://developers.google.com/web/tools/chrome-devtools/
https://www.tcpdump.org/2
https://www.wireshark.org/docs/man-pages/tshark.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://www.mintmobile.com/
https://www.nginx.com/
https://linux.die.net/man/8/ss
https://http2.akamai.com/demo
https://http2.golang.org/gophertiles
https://tranco-list.eu/list/6W9X
https://w3techs.com/technologies/details/ce-http3
https://w3techs.com/technologies/details/ce-http3
https://github.com/svarvel/web-perf-toolbox
https://developers.google.com/web/tools/lighthouse/audits/speed-index
https://developers.google.com/web/tools/lighthouse/audits/speed-index

	Abstract
	1 Introduction
	2 Experiment Setup/ Methodology
	3 HTTP & TCP Interplay
	3.1 Actualizing the Interplay
	3.2 Wait, What About HTTP/3?

	4 Evolving the Web Perf. Toolbox
	4.1 Extra Visibility with Igor
	4.2 Fine-Grained HTTP Control

	5 Employing the Tool Box
	5.1 Case Studies

	6 Related Work
	7 Conclusion
	References

