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Abstract
In this paper we present PERCIVAL, a browser-embedded,

lightweight, deep learning-powered ad blocker. PERCIVAL
embeds itself within the browser’s image rendering pipeline,
which makes it possible to intercept every image obtained
during page execution and to perform image classification
based blocking to flag potential ads.

Our implementation inside both Chromium and Brave
browsers shows only a minor rendering performance overhead
of 4.55%, for Chromium, and 19.07%, for Brave browser,
demonstrating the feasibility of deploying traditionally heavy
models (i.e. deep neural networks) inside the critical path
of the rendering engine of a browser. We show that our
image-based ad blocker can replicate EasyList rules with
an accuracy of 96.76%. Additionally, PERCIVAL does
surprisingly well on ads in languages other than English
and also performs well on blocking first-party Facebook
ads, which have presented issues for rule-based ad blockers.
PERCIVAL proves that image-based perceptual ad blocking
is an attractive complement to today’s dominant approach of
block lists.

1 Introduction
Web advertising provides the financial incentives necessary

to support most of the free content online, but it comes at a
security and privacy cost. To make advertising effective, ad
networks or publishers track user browsing behavior across
multiple sites to generate elaborate user profiles for targeted
advertising.

Users find that ads are intrusive [61] and cause disruptive
browsing experience [6, 27]. In addition, studies have shown
that advertisements impose privacy and performance costs
to users, and carry the potential to be a malware delivery
vector [2, 35, 37, 54, 55, 76].

Ad blocking is a software capability for filtering out
unwanted advertisements to improve user experience,
performance, security, and privacy. At present, ad blockers

†Employed by Brave software when part of this work took place.

either run directly in the browser [4, 12] or as browser
extensions [1].

Current ad blocking solutions filter undesired content based
on “handcrafted” filter lists such as EasyList [74], which
contain rules matching ad-carrying URLs and DOM elements.
Most widely-used ad blockers, such as uBlock Origin [26] and
Adblock Plus [1] use these block lists for content blocking.
While useful, these approaches fail against adversaries who
can change the ad-serving domain or obfuscate the web page
code and metadata.

In an attempt to find a more flexible solution, researchers
have proposed alternative approaches to ad blocking. One
such approach is called Perceptual ad blocking, which relies
on “visual cues” frequently associated with ads like the
AdChoices logo or a sponsored content link. Storey et al. [70]
built the first perceptual ad blocker that uses traditional
computer vision techniques to detect ad-identifiers. Recently,
Adblock Plus developers built filters into their ad blocker [15]
to match images against a fixed template in order to detect ad
labels. Due to the plethora of ad-disclosures, AdChoices logo
and other ad-identifiers, it is unlikely that traditional computer
vision techniques are sufficient and generalizable to the range
of ads one is likely to see in the wild.

A natural extension to traditional vision-based blocking
techniques is deep learning. Adblock Plus recently proposed
SENTINEL [65] that detects ads in web pages using deep
learning. SENTINEL’s deep learning model takes as input the
screenshot of the rendered webpage to detect ads. However,
this technology is still in development.

To this end, we present PERCIVAL, a native, deep
learning-powered perceptual ad blocker, which is built into
the browser image rendering pipeline. PERCIVAL intercepts
every image obtained during the execution sequence of a page
and blocks images that it classifies as ads. PERCIVAL is small
(half the average webpage size [25]) and fast, and we deploy
it online within two commercial browsers to block and detect
ads at real-time.

PERCIVAL can be run in addition to an existing ad blocker,
as a last-step measure to block whatever slips through its
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Figure 1: Overall architecture of PERCIVAL. PERCIVAL is
positioned in the renderer process-which is responsible for
creating rasterized pixels from HTML, CSS, Javascript. As
the renderer process creates the DOM and decodes and
rasterizes all image frames, these are first passed through
PERCIVAL. PERCIVAL blocks the frames that are classified
as ads. The corresponding output with ads removed is shown
above (right).

filters. However, PERCIVAL may also be deployed outside
the browser, for example, as part of a crawler, whose job is to
construct comprehensive block lists to supplement EasyList.

1.1 Contributions
This paper makes the following contributions:

• Perceptual ad blocking in Chromium-based
browsers. We deploy PERCIVAL in two
Chromium-based browsers: Chromium and Brave. We
demonstrate two deployment scenarios; first, PERCIVAL
blocks ads synchronously as it renders the page, with
a modest performance overhead. Second, PERCIVAL
classifies images asynchronously and memoizes the
results, thus speeding up the classification process1.

• Lightweight and accurate deep learning models. We
show that ad blocking can be done effectively using
highly-optimized deep neural network-based models
for image processing. Previous studies suggest that
models over 5MB in size become hard to deploy on
mobile devices [62]; because of our focus on low-latency
detection, we create a compressed in-browser model that
occupies 1.76MB2 on disk, which is smaller by factor
of 150 compared to other models of this kind [22], while
maintaining similar accuracy results.

• Accuracy and performance overhead measurements.
We show that our perceptual ad blocking model can
replicate EasyList rules with the accuracy of 96.76%,
making PERCIVAL a viable and complementary ad
blocking layer. Our implementation within Chromium

1We make the source code, pre-trained models and data available for
other researchers at https://github.com/dxaen/percival

2Our in-browser model is 3.2MB due to a less efficient serialization
format. Still, the weights are identical to our 1.76MB model

shows an average overhead of 178.23ms for page
rendering. This overhead shows the feasibility of
deploying deep neural networks inside the critical path
of the rendering engine of the browser.

• First-party ad blocking. While the focus of traditional
ad blocking is primarily on third-party ad blocking,
we show that PERCIVAL blocks first-party ads as
well, such as those found on Facebook. Specifically,
our experiments show that PERCIVAL blocks ads on
Facebook (often referred to as “sponsored content”)
with a 92% accuracy, with precision and recall of 78.4%
and 70.0%.

• Language-agnostic blocking. We demonstrate that our
model in PERCIVAL blocks images that are in languages
we did not train our model on. We evaluate our trained
model on Arabic, Chinese, Korean, French and Spanish
image-based ads. Our model achieves an accuracy
of 81.3% on Arabic, 95.1% on Spanish, and 93.9%
on French datasets, with moderately high precision and
recall. However, results from Chinese and Korean ads
are less accurate.

2 Motivation
Intrusive, online, advertising has been a long standing

concern for user privacy, security and overall web experience.
While web advertising makes it easier and more economic
for businesses to reach a wider audience, bad actors have
exploited this channel to engage in malicious activities.
Attackers use ad-distribution channels to hijack compromised
web pages in order to trick users into downloading
malware [54]. This is known as malicious advertising.

Mobile users are also becoming targets of malicious
advertising [68]. Mobile applications contain code embedded
from the ad networks, which provides the interface for the
ad networks to serve ads. This capability has been abused
by attackers where the landing page of the advertisements
coming from ad networks links to malicious content.
Moreover, intrusive advertisements significantly affect the
user experience on mobile phones due to limited screen
size [38]. Mobile ads also drain significant energy and
network data [73].

Web advertising also has severe privacy implications for
users. Advertisers use third party web-tracking by embedding
code in the websites the users visit, to identify the same users
again in a different domain, creating a more global view of
the user browsing behavior [52]. Private user information
is collected, stored and sold to other third party advertisers.
These elaborate user profiles can be used to infer sensitive
information about the users like medical history or political
views [31,57]. Communication with these third party services
is unencrypted, which can be exploited by attackers.

The security and privacy concerns surrounding web
advertising has motivated research in ad blocking tools
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from both academia [29, 40, 44, 69, 75] and industry notably
Adblock Plus [1], Ghostery [13], Brave [4], Mozilla [47],
Opera [16] and Apple [17]. Ad blocking serves to improve
web security, privacy, usability, and performance. As of
February 2017, 615 million devices had ad blockers
installed [19] However, recently Google Chrome [14]
and Safari [3] proposed changes in the API exposed to
extensions, with the potential to block extension based
ad-blockers. This motivates the need for native ad blockers
like Brave [4], Opera [16], AdGraph [44], PageGraph [32]
and even PERCIVAL.

3 PERCIVAL Overview
This paper presents PERCIVAL, a novel deep-learning based

system for blocking ads. Our primary goal is to build a system
that blocks ad images that could escape detection by current
techniques, while remaining small and efficient enough to run
in a mobile browser.

Figure 1 shows how PERCIVAL blocks rendering of ads.
First, PERCIVAL runs in the browser image rendering pipeline.
By running in the image rendering pipeline, PERCIVAL can
inspect all images before the browser shows them to the
user. Second, PERCIVAL uses a deep convolutional neural
network (CNN) for detecting ad images. Using CNNs enables
PERCIVAL to detect a wide range of ad images, even if they
are in a language that PERCIVAL was not trained on.

This section discusses PERCIVAL’s architecture overview,
possible alternative implementations and detection model.
Section 4 discusses the detailed design and implementation
for our browser modifications and our detection model.

3.1 PERCIVAL’s Architecture Overview
PERCIVAL’s detection module runs in the browser’s

image decoding pipeline after the browser has decoded the
image into pixels, but before it displays these pixels to the
user. Running PERCIVAL after the browser has decoded an
image takes advantage of the browser’s mature, efficient, and
extensive image decoding logic, while still running at a choke
point before the browser displays the decoded pixels. Simply
put, if a user sees an image, it goes through this pipeline first.

More concretely, as shown in Figure 1 PERCIVAL runs
in the renderer process of the browser engine. The renderer
process on receiving the content of the web page proceeds
to create the intermediate data structures to represent the
web page. These intermediate representations include the
DOM-which encodes the hierarchical structure of the web
page, the layout-tree, which consists of the layout information
of all the elements of the web page, and the display list, which
includes commands to draw the elements on the screen. If
an element has an image contained within it, it needs to go
through the Image Decoding Step before it can be rasterized.
We run PERCIVAL after the Image Decoding Step during
the raster phase which helps run PERCIVAL in parallel for
multiple images at a time. Images that are classified as ads

Bitmap Image
onGetPixels()

Deferred Image Decoder

SkImage

Image Decoders

Decoding Image Generator 

SkImage Generator

Percival

Figure 2: PERCIVAL in the image decoding pipeline. SkImage
Generator allocates a bitmap and calls the onGetPixels()
of DecodingImageGenerator to populate the bitmap. This
bitmap is then passed to the network for classification and
cleared if it contains an ad.

are blocked from rendering. The web page with ads removed
is shown in Figure 1 (right). We present the detailed design
and implementation in Section 4.

3.2 Alternative Possible Implementations and
Advantages of PERCIVAL

One alternative to running PERCIVAL directly in the
browser could have been to run PERCIVAL in the browser’s
JavaScript layer via an extension. However, this would require
scanning the DOM to find image elements, waiting for them
to finish loading, and then screenshotting the pixels to run
the detection model. The advantage of a JavaScript-based
system is that it works within current browser extensibility
mechanisms, but recent work has shown how attackers can
evade this style of detection [71].

Ad blockers that inspect web pages based on the DOM such
as Ad Highlighter [70] are prone to DOM obfuscation attacks.
They assume that the elements of the DOM strictly correspond
to their visual representation. For instance, an ad blocker that
retrieves all img tags and classifies the content contained in
these elements does not consider the case, where a rendered
image is a result of several CSS or JavaScript transformations
and not the source contained in the tag. These ad blockers are
also prone to resource exhaustion attacks where the publisher
injects a lot of dummy elements in the DOM to overwhelm
the ad blocker.

Additionally, a native implementation is much faster than
a browser extension implementation with the added benefit
of having access to the unmodified image buffers.

3.3 Detection Model
PERCIVAL runs a detection model on every image loaded

in the document’s main frame, a sub-document such as an
iframe, as well as images loaded in JavaScript to determine
if the image is an ad.

Although running directly within the browser provides
PERCIVAL with more control over the image rendering
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process, it introduces a challenge: how to run the model
efficiently in a browser? Our goal is to run PERCIVAL in
browsers that run on laptops or even mobile phones. This
requires that the model be small to be practical [62]. This
design also requires that the model run directly in the image
rendering pipeline, so overhead remains low. Any overhead
adds latency to rendering for all images it inspects.

In PERCIVAL, we use the SqueezeNet [43] CNN as the
starting point for our detection model. We modify the basic
SqueezeNet network to be optimized for ad blocking by
removing less important layers. This results in a model size
that is less than 2MB and detects ad images in 11ms per
image.

A second challenge in using small CNNs is how to provide
enough training data. In general, smaller CNNs can have
suitable performance but require more training data. What is
more, the labels are highly imbalanced making the training
procedure even more challenging.

Gathering ad images is non-trivial; most ads are
programmatically inserted into the document through
iframes or JavaScript, and so simple crawling methods that
work only on the initial HTML of the document will miss
most of the ad images.

To crawl ad images, other researchers [22, 71] propose
screenshotting iframes or JavaScript elements. This data
collection method leads to problems with synchronizing the
timing of the screenshot and when the element loads. Many
screenshots end up with whites-space instead of the image
content. Also, this method only makes sense if the input to
the classifier is the rendered content of the web page.

To address these concerns and to provide ample training
data, we design and implement a custom crawler in Blink3

that handles dynamically-updated data and eliminates the
race condition between the browser displaying the content
and the screenshot we use to capture the image data. Our
custom-crawler fetches ad and non-ad images directly from
the rendering pipeline and uses the model trained during the
previous phase as a labeler. This way we amplify our dataset
to fine-tune our model further.

4 Design and Implementation of PERCIVAL
This section covers the design and implementation of the

browser portion of PERCIVAL. We first cover the high-level
design principles that guide our design, and then we discuss
rendering and image handling in Blink, the rendering engine
of Chromium-based browsers. Finally, we describe our
end-to-end implementation within Blink.

4.1 Design Goals
We have two main goals in our design of PERCIVAL:

Run PERCIVAL at a choke point: Advertisers can serve
ad images in different formats, such as JPG, PNG, or GIF.

3Blink http://www.chromium.org/blink is the rendering engine used
by Chromium.

Depending on the format of the image, an encoded frame
can traverse different paths in the rendering pipeline. Also,
a wide range of web constructs can cause the browser
to load images, including HTML image tags, JavaScript
image objects, HTML Canvas elements, or CSS background
attributes. Our goal is to find a single point in the browser
to run PERCIVAL, such that it inspects all images, operates
on pixels instead of encoded images, but does so before the
user sees the pixels on the screen, enabling PERCIVAL to
block ad images cleanly. Note: If individual pixels are drawn
programmatically on canvas, PERCIVAL will not block it from
rendering.

In Blink, the raster task within the rendering pipeline
enables PERCIVAL to inspect, and potentially block, all
images. Regardless of the image format or how the browser
loads it, the raster task decodes the given image into raw
pixels, which it then passes to the GPU to display the content
on the screen. We run PERCIVAL at this precise point to
abstract different image formats and loading techniques, while
still retaining the opportunity to block an image before the
user sees it.

Run multiple instances of PERCIVAL in parallel:
Running PERCIVAL in parallel is a natural design choice
because PERCIVAL makes all image classification decisions
independently based solely on the pixels of each individual
image. When designing PERCIVAL, we look for opportunities
to exploit this natural parallelism to minimize the latency
added due to the addition of our ad blocking model.

4.2 Rendering and PERCIVAL: Overview
We integrate PERCIVAL into Blink, the rendering engine

for Google Chrome and Brave. From a high level, Blink’s
primary function is to turn a web page into the appropriate
GPU calls [5] to show the user the rendered content.

A web page can be thought of as a collection of HTML,
CSS, and JavaScript code, which the browser fetches from the
network. The rendering engine parses this code to build the
DOM and layout tree, and to issue OpenGL calls via Skia,
Google’s graphics library [24].

The layout tree contains the locations of the regions the
DOM elements will occupy on the screen. This information
together with the DOM element is encoded as a display
item.

The browser then proceeds with rasterization, which takes
the display items and turns them into bitmaps. Rasterization
issues OpenGL draw calls via the Skia library to draw bitmaps.
If the display list items have images in them (a common
occurrence), the browser must decode these images before
drawing them via Skia.

PERCIVAL intercepts the rendering process at this point,
after the Image Decode Task and during the Raster Task.
As the renderer process creates the DOM and decodes and
rasterizes all image frames, these are first passed through
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PERCIVAL. PERCIVAL blocks the frames that are classified
as ads.

4.3 End-to-End Implementation in Blink

We implement PERCIVAL inside Blink (Chromium
rendering engine), where PERCIVAL uses the functionality
exposed by the Skia library. Skia uses a set of image decoding
operations to turn SkImages, which is the internal type within
Skia that encapsulates images, into bitmaps. PERCIVAL reads
these bitmaps and classifies their content accordingly. If
PERCIVAL classifies the bitmap as an ad, it blocks it by
removing its content. Otherwise, PERCIVAL lets it pass
through to the next layers of the rendering process. When
content is cleared, there are several ways to fill up the
surrounding white-space; either collapsing it by propagating
the information upwards or displaying a predefined image
(user’s spirit animal) in place of the ad.

Figure 2 shows an overview of our Blink integration.
Blink class BitmapImage creates an instance of
DeferredImageDecoder which in turn instantiates a
SkImage object for each encoded image. SkImage creates an
instance of DecodingImageGenerator (blink class) which
will in turn decode the image using the relevant image
decoder from Blink. Note that the image hasn’t been decoded
yet since chromium practices deferred image decoding.

Finally, SkImageGenerator allocates bitmaps
corresponding to the encoded SkImage, and calls
onGetPixels() of DecodingImageGenerator to decode
the image data using the proper image decoder. This method
populates the buffer (pixels) that contain decoded pixels,
which we pass to PERCIVAL along with the image height,
width, channels information (SKImageInfo) and other
image metadata. PERCIVAL reads the image, scales it
to 224×224×4 (default input size expected by SqueezeNet),
creates a tensor, and passes it through the CNN. If PERCIVAL
determines that the buffer contains an ad, it clears the buffer,
effectively blocking the image frame.

Rasterization, image decoding, and the rest of the
processing happen on a raster thread. Blink rasters on a per
tile basis and each tile is like a resource that can be used by
the GPU. In a typical scenario there are multiple raster threads
each rasterizing different raster tasks in parallel. PERCIVAL
runs in each of these worker threads after image decoding and
during rasterization, which runs the model in parallel.

As opposed to Sentinel [65] and Ad Highlighter [36]
the input to PERCIVAL is not the rendered version of web
content; PERCIVAL takes in the Image pixels directly from
the image decoding pipeline. This is important since with
PERCIVAL we have access to unmodified image buffers and
it helps prevent attacks where publishers modify content of
the webpage (including iframes) with overlaid masks (using
CSS techniques) meant to fool the ad blocker classifier.

Decoding Image 
Generator

Percival

SkImage Generator

Retrain and 
Update

Ad Non-Ad

onGetPixels()

classification

Figure 3: Crawling, labelling and re-training with PERCIVAL.
Every decoded image frame is passed through PERCIVAL and
PERCIVAL downloads the image frame into the appropriate
bucket.

5 Deep Learning Pipeline
This section covers the design of PERCIVAL’s deep neural

network and the corresponding training workflow. We first
describe the network employed by PERCIVAL and the training
process. We then describe our data acquisition and labelling
techniques.

5.1 PERCIVAL’s CNN Architecture
We cast ad detection as a traditional image classification

problem, where we feed images into our model and it classifies
them as either being (1) an ad, or (2) not an ad. CNNs are
the current standard in the computer vision community for
classifying images.

Because of the prohibitive size and speed of standard
CNN based image classifiers, we use a small network,
SqueezeNet [43], as the starting point for our in-browser
model. The SqueezeNet authors show that SqueezeNet
achieves comparable accuracy to much larger CNNs, like
AlexNet [48], and boasts a final model size of 4.8 MB.

SqueezeNet consists of multiple fire modules. A fire module
consists of a “squeeze” layer, which is a convolution layer
with 1×1 filters and two “expand” convolution layers with
filter sizes of 1 × 1 and 3 × 3, respectively. Overall, the
”squeeze” layer reduces the number of input channels to larger
convolution filters in the pipeline.

A visual summary of PERCIVAL’s network structure is
shown in Figure 4. As opposed to the original SqueezeNet,
we down-sample the feature maps at regular intervals in the
network. This helps reduce the classification time per image.
We also perform max-pooling after the first convolution layer
and after every two fire modules.

5.2 Data Acquisition
We use two systems to collect training image data. First,

we use a traditional crawler with traditional ad-blocking rules
(EasyList [7]) to identify ad images. Second, we use our
browser instrumentation from PERCIVAL to collect images,
improving on some of the issues we encountered with our
traditional crawler.
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b) Percival Architecture
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Figure 4: Original SqueezeNet (left) and PERCIVAL’s fork
of SqueezeNet (right). For Conv, Maxpool2D, and Avgpool
blocks a×b represents the dimensions of the filters used. For
fire blocks a, b represents the number of intermediate and
output channels. We remove extraneous blocks as well as
downsample the feature maps at regular intervals to reduce
the classification time per image.

5.2.1 Crawling with EasyList
We use a traditional crawler matched with a traditional

rule-based ad blocker to identify ad content for our first
dataset. In particular, to identify ad elements which could
be iframes or complex JavaScript constructs, we use EasyList,
which is a set of rules that identify ads based on the URL of
the elements, location within the page, origin, class or id tag,
and other hand-crafted characteristics known to indicate the
presence of ad content.

We built a crawler using Selenium [21] for browser
automation. We then use the crawler to visit Alexa top-1,000
web sites, waiting for 5 seconds on each page, and then
randomly selecting 3 links and visiting them, while waiting
on each page for a period of 5 seconds as before. For every
visit, the crawler applies every EasyList network, CSS and
exception rule.

For every element that matches an EasyList rule, our
crawler takes a screenshot of the component, cropped tightly
to the coordinates reported by Chromium, and then stores
it as an ad sample. We capture non-ad samples by taking
screenshots of the elements that do not match any of the
EasyList rules. Using this approach we, extract 22,670 images
out of which 13,741 are labelled as ads, and 8,929 as non-ads.
This automatic process was followed by a semi-automated
post-processing step, which includes removing duplicate
images, as well as manual spot-checking for misclassified
images.

Eventually, we identify 2,003 ad images and 7,432 non-ad
images. The drop in the number of ad images from 13,741 to
2,003 is due to a lot duplicates and content-less (single-color)

images due to the asynchrony of iframe-loading and the
timing of the screenshot. These shortcomings motivated our
new crawler. To balance the positive and negative examples
in our dataset so the classifier doesn’t favor one class over
another, we limited the number of non ad and ad images to
2,000.

5.2.2 Crawling with PERCIVAL

We found that traditional crawling was good enough to
bootstrap the ad classification training process, but it has
the fundamental disadvantage that for dynamically-updated
elements, the meaningful content is often unavailable at the
time of the screenshot, leading to screenshots filled with
white-space.

More concretely, the page load event is not very reliable
when it comes to loading iframes. Oftentimes when we take a
screenshot of the webpage after the page load event, most of
the iframes do not appear in the screenshots. Even if we wait
a fixed amount of time before taking the screenshot, iframes
constantly keep on refreshing, making it difficult to capture
the rendered content within the iframe consistently.

To handle dynamically-updated data, we use PERCIVAL’s
browser architecture to read all image frames after the browser
has decoded them, eliminating the race condition between
the browser displaying the content and the screenshot we use
to capture the image data. This way we are guaranteed to
capture all the iframes that were rendered, independently of
the time of rendering or refresh rate.
Instrumentation: Figure 3 shows how we use PERCIVAL’s
browser instrumentation to capture image data. Each encoded
image invokes an instance of DecodingImageGenerator
inside Blink, which in turn decodes the image using the
relevant image decoder (PNG, GIFs, JPG, etc.). We use the
buffer passed to the decoder to store pixels in a bitmap
image file, which contains exactly what the rendering engine
sees. Additionally, the browser passes this decoded image to
PERCIVAL, which determines whether the image contains an
ad. This way, every time the browser renders an image, we
automatically store it and label it using our initially trained
network, resulting in a much cleaner dataset.
Crawling: To crawl for ad and non-ad images, we run our
PERCIVAL-based crawler with a browser automation tool
called Puppeteer [20]. In each phase, the crawler visits the
landing page of each Alexa top-1,000 websites, waits until
networkidle0 (when there are no more than 0 network
connections for at least 500 ms) or 60 seconds. We do this
to ensure that we give the ads enough time to load. Then
our crawler finds all internal links embedded in the page.
Afterwards, it visits 20 randomly selected links for each page,
while waiting for networkidle0 event or 60 seconds time
out on each request.

In each phase, we crawl between 40,000 to 60,000 ad
images. We then post process the images to remove duplicates,
leaving around 15-20% of the collected results as useful. We
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Images Ads Identified Accuracy Precision Recall

6,930 3466 96.76% 97.76% 95.72%

Figure 5: Summary of the results obtained by testing the
dataset gathered using EasyList with PERCIVAL.

crawl for a total of 8 phases, retraining PERCIVAL after each
stage with the data obtained from the current and all the
previous crawls. As before, we cap the number of non-ad
images to the amount of ad images to ensure a balanced
dataset.

This process was spread-out in time over 4 months,
repeated every 15 days for a total of 8 phases, where each
phase took 5 days. Our final dataset contains 63,000 unique
images in total with a balanced split between positive and
negative samples.

6 Evaluation
6.1 Accuracy Against EasyList

To evaluate whether PERCIVAL can be a viable shield
against ads, we conduct a comparison against the most popular
crowd-sourced ad blocking list, EasyList [7], currently being
used by extensions such as Adblock Plus [1], uBlock
Origin [26] and Ghostery [13].

Methodology: For this experiment, we crawl Alexa top 500
news websites as opposed to Alexa top 1000 websites used in
the crawl for training. This is because news websites are
an excellent source of advertisements [18] and the crawl
can be completed relatively quickly. Also, Alexa top 500
news websites serves as a test domain different from the train
domain we used previously.

For our comparison we create two data sets: First,
we apply EasyList rules to select DOM elements that
potentially contain ads (IFRAMEs, DIVs, etc.); we then
capture screenshots of the contents of these elements. Second,
we use resource-blocking rules from EasyList to label all the
images of each page according to their resource URL. After
crawling, we manually label the images to identify the false
positives resulting in a total of 6,930 images.

Performance: On our evaluation dataset, PERCIVAL is
able to replicate the EasyList rules with accuracy 96.76%,
precision 97.76% and recall 95.72% (Figure 5), illustrating a
viable alternative to the manually-curated filter-lists.

Ads No-ads Accuracy FP FN Precision Recall

354 1,830 92.0% 68 106 78.4% 70.0%

Figure 6: Online evaluation of Facebook ads and sponsored
content.

Figure 7: The screenshots show one of the author’ Facebook
home page accessed with PERCIVAL. The black rectangles
are not part of the original screenshot.

6.2 Blocking Facebook Ads
Facebook obfuscates the “signatures” of ad elements (e.g.

HTML classes and identifiers) used by filter lists to block
ads since its business model depends on serving first-party
ads. As of now, Facebook does not obfuscate the content
of sponsored posts and ads due to the regulations regarding
misleading advertising [10,11]. Even though this requirement
favors perceptual ad blockers over traditional ones, a lot of
the content on Facebook is user-created which complicates
the ability to model ad and non-ad content.

In this section, we assess the accuracy of PERCIVAL on
blocking Facebook ads and sponsored content.

Methodology: To evaluate PERCIVAL’s performance on
Facebook, we browse Facebook with PERCIVAL for a
period of 35 days using two non-burner accounts that have
been in use for over 9 years. Every visit is a typical
Facebook browsing session, where we browse through the
feed, visit friends’ profiles, and different pages of interest.
For desktop computers two most popular places to serve
ads is the right-side columns and within the feed (labelled
sponsored) [9].

For our purposes, we consider content served in these
elements as ad content and everything else as non-ad content.
A false positive (FP) is defined as the number of non-ads
incorrectly blocked and false negative (FN) is the number
of ads PERCIVAL missed to block. For every session, we
manually compute these numbers. Figure 6 shows the
aggregate numbers from all the browsing sessions undertaken.
Figure 7 shows PERCIVAL blocking right-side columns
correctly.

Results: Our experiments show that PERCIVAL blocks ads
on Facebook with a 92% accuracy and 78.4% and 70.0% as
precision and recall, respectively. Figure 6 shows the complete
results from this experiment. Even though we achieve the
accuracy of 92%, there is a considerable number of false
positives and false negatives, and as such, precision and recall
are lower. The classifier always picks out the ads in the
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right-columns but struggles with the ads embedded in the feed.
This is the source of majority of the false negatives. False
positives come from high “ad intent” user-created content, as
well as content created by brand or product pages on Facebook
(Figure 8).

Figure 8: Examples of false positives and false negatives on
Facebook (left) False Positive: This post was created by page
owned by Dell Corp. (right) False Negative: This post was
part of the sponsored content in the news feed.

Discussion: False Positives and False Negatives: To put
Figure 6 into perspective since it might appear to have an
alarming number of false positives and false negatives, it is
worthwhile to consider an average scenario. If each facebook
visit on average consists of browsing through 100 images, then
by our experiments, a user will find roughly 16 ad images and
84 non-ad images, out of which PERCIVAL will block 11 to
12 ad images on average while also blocking 3 to 4 non-ad
images. This is shown in Figure 10.

In addition to the above mentioned experiments which
evaluate the out of box results of using PERCIVAL, we trained
a version of PERCIVAL on a particular user’s ad images. The
model achieved higher precision and recall of 97.25%, 88.05%
respectively.

6.3 Blocking Google Image Search Results
To improve our understanding of the misclassifications

of PERCIVAL, we used Google Images as a way to fetch
images from distributions that have high or low ad intent. For
example, we fetched results with the query “Advertisement”
and used PERCIVAL to classify and block images. As we
can see in Figure 11, out of the top 23 images, 20 of
them were successfully blocked. Additionally, we tested with
examples of low ad intent distribution we used the query
“Obama”). We also searched for other keywords, such as
“Coffee”, “Detergent”, etc. The detailed results are presented
in Figure 12. As shown, PERCIVAL can identify a significant
percentage of images on a highly ad-biased content.

6.4 Language-Agnostic Detection
We test PERCIVAL against images with language content

different than the one we trained on. In particular, we source
a data set of images in Arabic, Chinese, French, Korean and
Spanish.
Crawling: To crawl for ad and non-ad images, we use
ExpressVPN [8] to VPN into major world cities where

Language # crawled # Ads Accuracy Precision Recall

Arabic 5008 2747 81.3% 83.3% 82.5%
Spanish 2539 309 95.1% 76.8% 88.9%
French 2414 366 93.9% 77.6% 90.4%
Korean 4296 506 76.9% 54.0% 92.0%
Chinese 2094 527 80.4% 74.2% 71.5%

Figure 9: Accuracy of PERCIVAL on ads in non-English
languages. The second column represents the number of
images we crawled, while the third column is the number
of images that were identified as ads by a native speaker. The
remaining columns indicate how well PERCIVAL is able to
reproduce these labels.

Images Ads No-ads FP FN

100 16 84 3-4 4-5

Figure 10: Average reporting of evaluation of Facebook ads
and sponsored content per visit. We assume each Facebook
visit consists of browsing through 100 total images.

the above mentioned languages are spoken. For instance,
to crawl Korean ads, we VPN into two locations in Seoul.
We then manually visit top 10 websites as mentioned in
SimilarWeb [23] list. We engage with the ad-networks by
clicking on ads, as well as closing the ads (icon at the top
right corner of the ad) and then choosing random responses
like content not relevant or ad seen multiple times. This is
done to ensure we are served ads from the language of the
region.

We then run PERCIVAL-based crawler with the browser
automation tool Puppeteer [20]. Our crawler visits the landing
page of each top 50 SimilarWeb websites for the given region,
waits until networkidle0 (when there are no more than 0
network connections for at least 500 ms) or 60 seconds. Then
our crawler finds all internal links embedded in the page.
Afterwards, it visits 10 randomly selected links for each page,
while waiting for networkidle0 event or 60 seconds time out

Figure 11: Search results from searching for “Advertisement”
on Google images, using PERCIVAL.
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Query # blocked # rendered FP FN

Obama 12 88 12 0
Advertisement 96 4 0 4
Coffee 23 77 - -
Detergent 85 15 10 6
iPhone 76 24 23 1

Figure 12: PERCIVAL blocking image search results. For
each search we only consider the first 100 images returned
(“-” represents cases where we were not able to determine
whether the content served is ad or non-ad).

on each request. As opposed to Section 5.2.2, we download
every image frame to a single bucket.
Labeling: For each language, we crawl 2,000–6,000 images.
We then hire a native speaker of the language under
consideration and have them label the data crawled for that
language. Afterwards, we test PERCIVAL with this labeled
dataset to determine how accurately can PERCIVAL reproduce
these human annotated labels. Figure 9 shows the detailed
results from all languages we test on. Figure 14 shows a
screen shot of a Portuguese website rendered with PERCIVAL.

Results: Our experiments show that PERCIVAL can
generalize to different languages with high accuracy (81.3%
for Portuguese, 95.1% for Spanish, 93.9% for French) and
moderately high precision and recall (83.3%, 82.5% for
Arabic, 76.8%, 88.9% for Spanish, 77.6%, 90.4% for French).
This illustrates the out-of-the box benefit of using PERCIVAL
for languages that have much lower coverage of EasyList
rules, compared to the English ones. The model does not
perform as well on Korean and Chinese datasets.

6.5 Salience Map of the CNN
To visualize which segments of the image are influencing

the classification decision, we used Grad-CAM [64] network
salience mapping which allow us to highlight the important
regions in the image that caused the prediction. As we can

(a) Ad image: Layer 9 (b) Ad image: Layer 5

Figure 13: Salience map of the network on a sample ad images.
Each image corresponds to the output of Grad-CAM [64] for
the layer in question.

Figure 14: PERCIVAL results on record.pt (Portuguese
language website).

see in Figure 13, our network is focusing on ad visual cues
(AdChoice logo), when this is present (case (a)), also it follows
the outlines of text (signifying existence of text between white
space) or identifies features of the object of interest (wheels
of a car).

6.6 Runtime Performance Evaluation
We next evaluate the impact of PERCIVAL-based blocking

on the browser performance. This latency is a function to
the number and complexity of the images on the page and
the time the classifier takes to classify each of them. We
measure the rendering time impact when we classify each
image synchronously.

To evaluate the performance of our system, we used
top 5,000 URLs from Alexa to test against Chromium
compiled on Ubuntu Linux 16.04, with and without
PERCIVAL activated. We also tested PERCIVAL in Brave,
a privacy-oriented Chromium-based browser, which blocks
ads using block lists by default. For each experiment we
measured render time which is defined as the difference
between domComplete and domLoading events timestamps.
We conducted the evaluations sequentially on the same
Amazon m5.large EC2 instance to avoid interference with
other processes and make the comparison fair. Also, all the
experiments were using xvfb for rendering, an in-memory
display server which allowed us to run the tests without a
display.

In our evaluation we show an increase of 178.23ms of
median render time when running PERCIVAL in the rendering
critical path of Chromium and 281.85ms when running inside
Brave browser with ad blocker and shields on. Figures 15
and 16 summarize the results.

To capture rendering and perceptual impact better, we
create a micro-benchmark with firstMeaningfulPaint to
illustrate overhead. In our new experiment, we construct
a static html page containing 100 images. We then
measure firstMeaningfulPaint with Percival classifying
images synchronously and asynchronously. In synchronous
classification, PERCIVAL adds 120ms to Chrome and 140ms
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Figure 15: Render time evaluation in Chromium and Brave
browser.

to Brave. In asynchronous classification, PERCIVAL adds
6ms to Chrome and 3ms to Brave. Although asynchronous
classification nearly eliminates overhead, it opens up the
possibility of showing an image to the user that we later
remove after flagging it as an ad because the rasterization of
the image runs in parallel with classification in this mode of
operation.

To determine why PERCIVAL with Brave is slower than
Chromium. We trace events inside the decoding process using
firstMeaningfulPaint and confirm there is no significant
deviation between the two browsers. The variance observed
initially is due to the additional layers in place like Brave’s
ad blocking shields.

6.7 Comparison With Other Deep Learning
Based Ad Blockers

Recently, researchers evaluated the accuracy of three
deep-learning based perceptual ad blockers including
PERCIVAL [71]. They used real website data from Alexa
top 10 news websites to collect data which is later manually
labelled. In this evaluation, PERCIVAL outperformed models
150 times bigger than PERCIVAL in terms of recall. We show
their results in Figure 17.

6.8 Adversarial Attacks against PERCIVAL
In recent work by Tramèr et al. [71], they show how

the implementation of some state-of-the-art perceptual ad
blockers, including PERCIVAL, is vulnerable to attacks.

First, the authors in [71] claim that one adversarial sample
influences PERCIVAL to block another benign non-ad image.
This, however, is not true; the authors claim to use two benign

Baseline Treatment Overhead (%) (ms)

Chromium Chromium + PERCIVAL 4.55 178.23
Brave Brave + PERCIVAL 19.07 281.85

Figure 16: Performance evaluation of PERCIVAL on Render
metric.

images, one of which is not benign and other is contentless
white-space image. PERCIVAL blocks these images. If these
are replaced with stock non-ad images, PERCIVAL correctly
renders both, meaning that PERCIVAL makes each decision
independently and is not vulnerable to hijacking as is claimed
in the paper.

We found that one of the attacks where they used
PERCIVAL’s model to create adversarial ad images affects
PERCIVAL due to our design decision to run PERCIVAL
client-side thereby giving attackers white box access to the
model. To address this concern, we argue that PERCIVAL is
extremely light-weight and can be re-trained and updated very
quickly. Our model currently takes 9 minutes (7 epochs) to
fine-tune the weights of the network on an NVIDIA V 100
GPU, meaning that we can generate new models very quickly.
PERCIVAL is 1.7MB which is almost half the average web
page in 2018 [25] making frequent downloads easier.

To demonstrate, re-training and model update as an
effective defense against the adversarial samples, we trained
a MobilenetV2 [63] with our current dataset. It took 9
minutes of fine-tuning to get to our baseline accuracy. The
updated model correctly classified all the adversarial samples
generated for PERCIVAL by Tramer et al. [71] suggesting that
none of the samples transferred to this model. It should be
noted that, we did not add any more data to our dataset.

While we do accept that given sufficient time and machine
learning expertise, it may be possible to create adversarial
samples that generalize across different models but it in effect
makes evasion more expensive. If we can update the model
frequently, adversaries will have to play catch-up every time.

Additionally, to improve the robustness of the models
against adversarial attacks one could employ techniques like
min-max (robust) optimization [56] ,where the classification
loss is minimized while maximizing the acceptable
perturbation one can apply to the image, or randomized
smoothing [34, 51, 53] where provable (or certified) robust
accuracy can be afforded. Such techniques have shown
promising results in training robust models and are currently
under active research [66, 78].

Two main criticisms with such techniques is the
performance degradation in accuracy but also the costly
optimization involved. Although the "inherent tension"
between robustness and accuracy [72] is inevitable, the
l2 perturbations drive the network to focus on more
perceptual features and not on imperceptual features that
can be exploitable. The training time penalty though can
be mitigated by adopting fast min-max-based adversarial
robustness training algorithms like [67, 79]. Given the
fast iteration time for fine-tuning our network, any such
performance degradation should be within our iteration cycle
quota. We leave thorough study of such mitigation techniques
for future work.
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Model Size FP FN

Sentinel [22] Clone 256 MB 0/20 5/29
ResNet [42] 242 MB 0/20 21/39
PERCIVAL 1.76 MB 2/7 3/33

Figure 17: Tramer et al.’s [71] evaluation of various deep
learning based perceptual ad blockers. The difference in the
number of images used for evaluation stem from the kind of
images the ad blocker is expecting.

7 Limitations
Dangling Text: By testing PERCIVAL integrated into
Chromium, we noticed the following limitations. Many ads
consist of multiple elements, which contain images and text
information layered together. PERCIVAL is positioned in the
rendering engine, and therefore it has access to one image at
a time. This leads to situations where we effectively block
the image, but the text is left dangling. Although this is rare,
we can mitigate this by retraining the model with ad image
frames containing just the text. Alternatively, a non-machine
learning solution would be to memorize the DOM element
that contains the blocked image and filter it out on consecutive
page visitations. Although this might provide an unsatisfying
experience to the user, we argue that it is of the benefit of the
user to eventually have a good ad blocking experience, even
if this is happening on a second page visit.
Small Images: Currently, images that are below 100× 100
size skips PERCIVAL to reduce the processing time. This
is a limitation which can be alleviated by deferring the
classification and blocking of small images to a different
thread, effectively blocking asynchronously. That way we
make sure that we don’t regress the performance significantly,
while we make sure that consecutive requests will continue
blocking small ads.

8 Related Work
Filter lists: Popular ad blockers like, Adblock Plus [1],
uBlock Origin [26], and Ghostery [13] are using a set
of rules, called filter-list, to block resources that match a
predefined crowd-sourced list of regular expressions (from
lists like EasyList and EasyPrivacy). On top of that, CSS
rules are applied, to prevent DOM elements that are potential
containers of ads. These filter-lists are crowd-sourced and
updated frequently to adjust on the non-stationary nature
of the online ads [70]. For example, EasyList, the most
popular filter-list, has a history of 9 years and contains
more than 60,000 rules [74]. However, filter-list based
solutions enable a continuous cat-and-mouse game: their
maintenance cannot scale efficiently, as they depend on the
human-annotator and they do not generalize to “unseen”
examples.
Perceptual Ad Blocking: Perceptual ad blocking is the
idea of blocking ads based solely on their appearance; an

example ad, highlighting some of the typical components.
Storey et al. [70] uses the rendered image content to identify
ads. More specifically, they use OCR and fuzzy image search
techniques to identify visual cues such as ad disclosure
markers or sponsored content links. Unlike PERCIVAL, this
work assumes that the ad provider is complying with the
legislation and is using visual cues like AdChoices.

Sentinel [65] proposes a solution based on convolutional
neural networks (CNNs) to identify Facebook ads. This
work is closer to our proposal; however, their model is not
deployable in mobile devices or desktop computers because
of its large size (>200MB). Also, we would like to mention
the work of [28, 42, 77], where they use deep neural networks
to identify the represented signifiers in the Ad images. This is
a promising direction in semantic and perceptual ad blocking.

Adversarial attacks: In computer-vision, researchers have
demonstrated attacks that can cause prediction errors by
near-imperceptible perturbations of the input image. This
poses risks in a wide range of applications on which
computer vision is a critical component (e.g. autonomous
cars, surveillance systems) [58–60]. Similar attacks have been
demonstrated in speech to text [30], malware detection [39]
and reinforcement-learning [41]. To defend from adversarial
attacks, a portfolio of techniques has been proposed [33, 45,
46,49,50,56], whether these solve this open research problem,
remains to be seen.

9 Conclusion
With PERCIVAL, we illustrate that it is possible to

devise models that block ads, while rendering images inside
the browser. Our implementation shows a rendering time
overhead of 4.55%, for Chromium and and 19.07%, for Brave
browser, demonstrating the feasibility of deploying deep
neural networks inside the critical path of the rendering engine
of a browser. We show that our perceptual ad blocking model
can replicate EasyList rules with an accuracy of 96.76%,
making PERCIVAL a viable and complementary ad blocking
layer. Finally, we demonstrate off the shelf language-agnostic
detection due to the fact that our models do not depend
on textual information and we show that PERCIVAL is a
compelling blocking mechanism for first-party Facebook
sponsored content, for which traditional filter based solutions
are less effective.
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