
BatteryLab, A Distributed Power Monitoring Platform For
Mobile Devices

https://batterylab.dev

Matteo Varvello†, Kleomenis Katevas⋄, Mihai Plesa†, Hamed Haddadi†⋄, Benjamin Livshits†⋄
† Brave Software, ⋄ Imperial College London

ABSTRACT
Recent advances in cloud computing have simplified the way that
both software development and testing are performed. Unfortunately,
this is not true for battery testing for which state of the art test-beds
simply consist of one phone attached to a power meter. These test-
beds have limited resources, access, and are overall hard to maintain;
for these reasons, they often sit idle with no experiment to run. In
this paper, we propose to share existing battery testing setups and
build BatteryLab, a distributed platform for battery measurements.
Our vision is to transform independent battery testing setups into
vantage points of a planetary-scale measurement platform offering
heterogeneous devices and testing conditions. In the paper, we de-
sign and deploy a combination of hardware and software solutions
to enable BatteryLab’s vision. We then preliminarily evaluate Bat-
teryLab’s accuracy of battery reporting, along with some system
benchmarking. We also demonstrate how BatteryLab can be used by
researchers to investigate a simple research question.

ACM Reference Format:
Matteo Varvello, Kleomenis Katevas, Mihai Plesa, Hamed Haddadi, Ben-
jamin Livshits. 2019. BatteryLab, A Distributed Power Monitoring Platform
For Mobile Devices: https://batterylab.dev. In The 18th ACM Workshop on
Hot Topics in Networks (HotNets ’19), November 13–15, 2019, Princeton, NJ,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3365609.
3365852

1 INTRODUCTION
The mobile device ecosystem is large, ever growing, and very much
“location-based”, i.e., different devices and operating systems (An-
droid and iOS) are popular at different locations. Advances in cloud
computing have simplified the way that mobile apps are tested, today.
Device farms [5, 23] let developers test apps across a plethora of mo-
bile devices, in real time. Device diversity for testing is paramount
since hardware and software differences might impact how an app is
displayed or performs.

To the best of our knowledge, no existing device farm offers
hardware-based battery measurements, where the power drawn by a
device is measured by directly connecting its battery to an external
power meter. Instead, few startups [19, 24] offer software-based
battery measurements where device resource monitoring (screen,
CPU, network, etc.) are used to infer the power consumed by few

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotNets ’19, November 13–15, 2019, Princeton, NJ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7020-2/19/11. . . $15.00
https://doi.org/10.1145/3365609.3365852

devices for which a calibration was possible [12]. This suggests a de-
mand for battery measurements, but a prohibitive cost for deploying
hardware-based solutions.

In the research community, hardware-based battery measurements
are instead quite popular [10, 11, 20, 34]. The common research
approach consists of buying the required hardware (often an Android
device and a Monsoon power monitor [26]), set it up on a desk, and
then use it sporadically. This is because such battery testbeds are
intrinsically local, i.e., they require a researcher or an app tester to
have physical access to the device and the power meter.

In this paper, we challenge the assumption that a battery testbed
needs to be local and propose BatteryLab [8], a distributed platform
for battery measurements. Similarly to PlanetLab [30], our vision is
a platform where members contribute hardware resources (e.g., some
phones and power monitor) in exchange of access to the hardware
resources offered by other platform members. As new members join
over time and from different locations, BatteryLab will naturally
grow richer of new and old devices, as well as of devices only
available at some specific locations.

BatteryLab’s architecture consists of an access server — which
enables an end-to-end test pipeline while supporting multiple users
and concurrent timed sessions — and several vantage points, i.e.,
the local testbeds described above. Vantage points are enhanced
with a lightweight controller — hosted on a Raspberry Pi [32] —
which runs BatteryLab’s software suite to enable remote testing, e.g.,
SSH channel with the access server and device mirroring [15] which
provides full remote control of test devices, via the browser.

We first evaluate BatteryLab with respect to the accuracy of
its battery readings. This analysis shows that the required extra
BatteryLab’s hardware has negligible impact on the power meter
reporting. It also shows a non-negligible cost associated with device
mirroring, suggesting that it should only be used when devising a test.
Such headless mode is not always possible, e.g., if usability testing
is the goal. In this case, the extra battery consumption associated
with mirroring should be accounted for.

Finally, we demonstrate BatteryLab usage investigating a simple
research question: which of today’s Android browser is the most
energy efficient? To answer this question, we automated the testing
of four popular browsers (Chrome, Firefox, Edge, and Brave) via
BatteryLab. Our results show that Brave offers minimal battery
consumption, while Firefox tends to consume the most. We further
augment this result across multiple locations (South Africa, China,
Japan, Brazil, and California) emulated via VPN tunneling.

2 RELATED WORK
This work was mainly motivated by the frustration of not finding
a tool offering easy access to battery measurements. Several exist-
ing tools could leverage some of BatteryLab’s ideas to match our
capabilities in a paid/centralized fashion. For example, device farms
such as AWS Device Farm [5] and Microsoft AppCenter [23] could
extend their offer using our hardware and software components.

https://batterylab.dev
https://batterylab.dev
https://doi.org/10.1145/3365609.3365852
https://doi.org/10.1145/3365609.3365852
https://doi.org/10.1145/3365609.3365852


HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Varvello et al.

The same is true for startups like GreenSpector [19] and Mobile
Enerlytics [24], which offer software-based battery testing.

To the best of our knowledge, MONROE [1] is the only measure-
ment platform sharing some similarities with BatteryLab. This is
a platform for experimentation in operational mobile networks in
Europe. MONROE currently has presence in 4 countries with 150
nodes, which are ad-hoc hardware configurations [25] designed for
cellular measurements. BatteryLab is an orthogonal measurement
platform to MONROE since it targets real devices (Android and iOS)
and fine-grained battery measurements. The latter requires specific
instrumentation (bulky power meters) that cannot be easily added
to MONROE nodes, especially the mobile ones. In the near future,
we will explore solutions like BattOr [33] to potentially enhance
BatteryLab with mobility support.

Last but not least, BatteryLab offers full access to test devices
via mirroring. This feature was inspired by [2], where the authors
build a platform to allow an Android emulator to be accessed via
the browser, with the goal to “crowdsource” human inputs for mo-
bile apps. We leverage the same concept to allow remote access to
BatteryLab, but also further extend it to actual devices and not only
emulators.

3 BATTERYLAB
This section details the design and implementation of BatteryLab,
a distributed measurement platform for device battery monitoring
(see Figure 1(a)). We currently focus on mobile devices only, but our
architecture is flexible and we thus plan to extend to more devices,
e.g., laptops and IoT devices.

One or multiple test devices (a phone/tablet connected to a power
monitor) are hosted at some university or research organization
around the world (vantage points). BatteryLab members (experi-
menters) gain access to test devices via a centralized access server,
where they can request time slots to deploy automated scripts and/or
ask remote control of the device. Once granted, remote control of the
device can be shared with testers, whose task is to manually interact
with a device, e.g., search for several items on a shopping application.
Testers are either volunteers, recruited via email or social media, or
paid, recruited via crowdsourcing websites like Mechanical Turk [4]
and Figure Eight [13].

3.1 Access Server
The main role of the access server is to manage the vantage points
and schedule experiments on them based on experimenter requests.
We built the access server atop of the Jenkins [21] continuous inte-
gration system which is free, open source, portable (as it is written
in Java) and backed by an active and large community. Jenkins en-
ables end-to-end test pipelines while supporting multiple users and
concurrent timed sessions.

BatteryLab’s access server runs in the cloud (Amazon Web Ser-
vices) which enables further scaling and cost optimization. Vantage
points have to be added explicitly and pre-approved in multiple ways
(IP lockdown, security groups). Experimenters need to authenticate
and be authorized to access the web console of the access server. For
increased security, this is only available over HTTPS.

The access server communicates with the vantage points via SSH.
New BatteryLab members grant SSH access from the server to
the vantage point’s controller via public key and IP white-listing
(see Section 3.4). Experimenters can access vantage points via the
access server, where they can create jobs to be deployed in their
favorite programming language. Only the experimenters that have

been granted access to the platform can create, edit or run jobs and
every pipeline change has to be approved by an administrator. This
is done via a role-based authorization matrix.

BatteryLab’s Python API (see Table 1) is available to provide user-
friendly device selection, interaction with the power meter, etc. The
access server will then dispatch queued jobs based on experimenter
constraints, e.g., target device, connectivity, or network location,
and BatteryLab constraints, e.g., one job at the time per device. By
default, the access server collects logs from the power meter which
are made available for several days within the job’s workspace.
Android logs like logcat and dumpsys can be requested via the
execute_adb API, if available.

We have developed several jobs which manage the vantage points.
These jobs span from updating BatteryLab wildcard certificates (see
Section 3.4), to ensure the power meter is not active when not needed
(for safety reasons), or to factory reset a device. These jobs were
motivated by our needs while building the system, and we expect
more to come over time and as the system grows.

3.2 Vantage Point
Figure 1(b) shows a graphical overview of a BatteryLab’s vantage
point with its main components: controller, power monitor, test
devices, circuit switch, and power socket.

Controller – This is a Linux-based machine responsible for manag-
ing the vantage point. The machine should be equipped with both
Ethernet and WiFi connectivity, a USB controller with a series of
available USB ports, as well as with an external General-Purpose
Input/Output (GPIO) interface. We use the popular Raspberry Pi
3B+ [32] running the latest version of Raspbian Stretch (April 2019)
that meets these requirements with an affordable price.

The controller’s primary role is to manage connectivity with test
devices. Each device is connected to the controller’s USB port, WiFi
access point (configured in NAT or Bridge mode), and Bluetooth.
USB connectivity is used to power each testing device when not
connected to the power monitor and to instrument it via the Android
Debugging Bridge [17] (ADB), if available. WiFi connectivity is
used to allow automation without the extra USB current, which inter-
feres with the power monitoring procedure. (De)activation of USB
ports is realized using uhubctl [28]. Bluetooth connectivity is
used for automation across OSes (Android and iOS) and connectiv-
ity (WiFi and cellular). Section 3.3 will discuss several automation
techniques supported by BatteryLab.

The second role of the controller is to provide device mirror-
ing, i.e., easy remote access to the device under test. We use VNC
(tigervnc [35]) to enable remote access to the controller. We
further use noVNC [29], an HTML VNC library and application,
to provide easy access to a VNC session via a browser without
no further software required at an experimenter or tester. We then
mirror the test device within the noVNC/VNC session and limit
access to only this visual element. In Android, this is achieved using
scrcpy [15], a screen mirroring utility which runs atop of ADB.
No equivalent software exists for iOS, but a similar functionality can
be achieved combining AirPlay Screen Mirroring [6] with (virtual)
keyboard keys (see Section 3.3).

Figure 1(c) shows a snapshot of the graphical user interface (GUI)
we have built around the default noVNC client. The GUI consists
of an interactive area and a toolbar. The interactive area (bottom
of the figure) is the area where a device screen is mirrored. As a
user (experimenter or tester) hovers his/her mouse within this area,
(s)he gains access to the device currently being mirrored, and each



BatteryLab HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

(a) Distributed architecture. (b) Vantage point design. (c) GUI.

Figure 1: BatteryLab’s infrastructure.

action is executed on the physical device. The GUI connects to
the controller’s backend using AJAX calls to some internal restful
APIs. The toolbar occupies the top part of the GUI, and implements a
convenient subset of BatteryLab’s API (see Table 1). Even though the
toolbar was initially thought as a visual helper for an experimenter,
it is also useful for less experienced test participants. For this reason,
BatteryLab allows an experimenter to control the presence or not of
the toolbar on the webpage to be shared with a test participant.

Power Monitor – This is a power metering hardware capable of
measuring the current consumed by a test device in high sampling
rate. BatteryLab currently supports the Monsoon HV [26], a power
monitor with a voltage range of 0.8V to 13.5V and up to 6A con-
tinuous current sampled at 5KHz. The Monsoon HV is controlled
using its Python API [27]. Other power monitors can be supported,
granted that they offer APIs to be integrated with BatteryLab’s soft-
ware suite.

Test Device(s) – It is a mobile device (phone or tablet) that can be
connected to a power monitor. While we recommend phones with
removable batteries, more complex setups requiring to (partially)
tear off a device to reach the battery are possible. Note that, on
Android, device mirroring is only supported on devices running API
21 (Android ≥ 5.0).

Circuit Switch – This is a relay-based circuit with multiple chan-
nels that lies between the test devices and the power monitor. The
circuit switch is connected to the controller’s GPIO interface and all
relays can be controlled via software from the controller. Each relay
uses the device’s voltage (+) terminal as an input, and programmati-
cally switches between the battery’s voltage terminal and the power
monitor’s Vout connector. Ground (-) connector is permanently
connected to all devices’ Ground terminals.

This circuit switch has two main tasks. First, it allows to switch
between a direct connection between the phone and its battery, and
the “battery bypass”—which implies disconnecting the battery and
connecting to the power monitor. This is required to allow the power
monitor to measure the current consumed during an experiment.
Second, it allows BatteryLab to concurrently support multiple test
device without having to manually move cables around.

API Description Parameters

list_devices List ADB ids
of test devices

-

device_mirroring Activate device
mirroring

device_id

power_monitor Toggle Monsoon
power state

-

set_voltage Set target
voltage

voltage_val

start_monitor Start battery
measurement

device_id, duration

stop_monitor Stop battery
measurement

-

batt_switch (De)activate
battery

device_id

execute_adb Execute ADB
command

device_id, command

Table 1: BatteryLab’s API.

WiFi Power Socket – This is used to allow the controller to turn
the Monsoon on and off, when needed. It connects to the controller
via WiFi and it is controlled with some simple API. The current
BatteryLab software suite only supports Meross power sockets by
integrating the following APIs [14]. In the near future we will replace
this power socket by extending the capabilities of the circuit switch.

3.3 Automation
BatteryLab supports three mechanisms for test automation, each
with its own set of advantages and limitations.

Android Debugging Protocol (Android) – ADB [17] is a powerful
tool/protocol to control an Android device. Commands can be sent
over USB, WiFi, or Bluetooth. While USB guarantees highest relia-
bility, it interferes with the power monitor due to the power sent to
activate the USB micro-controller at the device. This is solved by
sending commands over WiFi or Bluetooth. However, using WiFi
implies not being able to run experiments leveraging the mobile net-
work, and ADB-over-Bluetooth requires a rooted device. Based on
an experimenter needs, BatteryLab can dynamically switch between
the above automation solutions.



HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Varvello et al.

UI Testing (Android and iOS) – This solution uses UI testing frame-
works (e.g., Android’s user interface tests [18] or Apple’s XCTest
framework [7]), to produce a separate version of the testing app,
configured with automated actions. The advantage of this solution,
compared with ADB, is that it does not require a communication
channel with the Raspberry Pi. The main drawback is that it restricts
the set of applications that can be tested since access to an app source
code is required.

Bluetooth Keyboard (Android and iOS) – This approach automates
a test device via (virtual) keyboard keys (e.g., locate an app, launch
it, and interact with it). The controller emulates a typical keyboard
service to which test devices connect via Bluetooth. This approach
is generic and thus works for both Android and iOS devices, with
no rooting needed. Since it relies on Bluetooth, it also enables ex-
periments on the cellular network. The limitations are twofold. First,
Android device mirroring is not supported as it requires ADB. This
is not an issue for automated tests which can and should be run
in headless mode to minimize noise on the battery reporting (see
Figure 2). It follows that this limitation only applies to usability
testing (with real users) on a mobile network.

The second limitation is that the level of automation depends both
on the OS and app support for keyboard commands. In Android, it
can be challenging to match ADB’s API with this approach. It should
be noted though that, when available, ADB can still be used “outside”
of a battery measurement. That is, operations needed before and
after the actual battery measurement (e.g., cleaning an app cache)
can still be realized using ADB over USB. When the actual test
starts, e.g., launch an app and perform some simple interactions, we
can then switch to Bluetooth keyboard automation.

3.4 How to Join?
Institutions interested in joining BatteryLab can do so by following
our tutorial [9]. In short, we recommend the hardware to use and its
setup. It is important for the controller to be publicly reachable at the
following configurable ports: 2222 (SSH, access server only), 8080
(GUI’s backend), 6081 (noVNC). Members will provide a human
readable identifier for the vantage point which will be added to
BatteryLab’s DNS (e.g., node1.batterylab.dev) provided by
Amazon Route53 [3]. Our wildcard letsencrypt [22] certificate
will be provided at this point. Renewal of this certificate is managed
by the access server which also automatically deploys it at each
vantage point, when needed.

The next step consists of flashing the controller (Raspberry Pi)
with BatteryLab’s image. This will setup the most recent Raspbian
version, along with BatteryLab’s required code and its configuration.
Few manual steps are required to verify connectivity, grant pubkey
access to the access server, and connect at least one Android device.
At this point, the controller should be visible at the access server, and
the device accessible at https://node1.batterylab.dev.

4 PRELIMINARY EVALUATION
This section preliminarily evaluates BatteryLab using its first van-
tage point deployed at Imperial College London, UK. This consists
of a Monsoon power meter, a Samsung J7 Duo (Android 8.0), a
Raspberry Pi 3B+, and a Meross power socket. We first evaluate
BatteryLab’s accuracy in battery measurements reporting. Next, we
demonstrate its usage investigating a simple research question. We
further use this demonstration to benchmark BatteryLab’s system

Figure 2: CDF of current drawn
(direct, relay, direct-mirroring, relay-mirroring).

performance. Finally, we experiment with the impact of multiple
device locations emulated via a VPN.

4.1 Accuracy
Compared to a classic local setup for battery measurements, Battery-
Lab introduces some hardware (circuit relay) and software (device
mirroring) components that can impact the accuracy of the mea-
surements collected. We devised a simple experiment where we
compare three scenarios. First, a direct scenario consisting of just
the Monsoon power meter, the testing device, and the Raspberry Pi
to instrument the power meter. For this setup, we strictly followed
Monsoon indications [26] in terms of tape, cable type and length,
and connectors to be used. Next, we introduce two additional sce-
narios: a relay scenario where the relay circuit is used to enable
BatteryLab’s programmable switching between multiple devices as
well as between battery bypass and regular battery operation (see
Section 3.2). Finally, a mirroring scenario where the device screen
is mirrored to an open noVNC session. While the relay is always
“required” for BatteryLab to properly function, device mirroring is
only required for usability testing.

Figure 2 shows the Cumulative Distribution Function (CDF) of
the current consumed in each of the above scenarios during a 5
minutes test. For completeness, we also consider a direct-mirroring
scenario where the device is directly connected to Monsoon and
screencasting is active. During the test, we play an mp4 video pre-
loaded on the device sdcard. The rationale is to force the device
mirroring mechanism to constantly update as new frames are origi-
nated. The figure shows negligible difference between the “direct”
and “relay” scenario, regardless of the device mirroring being active
or not. A larger gap (median current grows from 160 to 220mA)
appears with device mirroring. This is because of the background
process responsible of screencasting to the controller which causes
additional CPU usage on the device (Figure 4).

4.2 Demonstration
We demonstrate BatteryLab’s usage assuming an experimenter asks
the following question: which of today’s Android web-browsers is
the most energy efficient? The experimenter writes an automation
script which instruments a browser to load a webpage and interact



BatteryLab HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

Figure 3: Per browser energy consumption
(Brave, Chrome, Edge, Firefox).

with it. Scripts are deployed via BatteryLab’s Jenkins interface, and
phone access is granted via device mirroring in the experimenter’s
browser. When satisfied with the automation, the experimenter can
launch a real test with active battery monitoring. The experiment is
added to Jenkin’s queue and will run when the right conditions are
met, i.e., no other test is running (required) and low CPU utilization
(optional). When an experiment completes, logs can be retrieved via
the Jenkins interface.

We build browser automation using bash and BatteryLab’s ADB
over WiFi automation procedure. We automate a few popular An-
droid browsers: Chrome, Firefox, Edge, and Brave. Our experiments
are WiFi only since the device under test is not rooted. Each browser
is instrumented to sequentially load 10 popular news websites. After
a URL is entered, the automation script waits 6 seconds – emulat-
ing a typical page load time (PLT) for these websites under our
(fast) network conditions – and then interact with the page by ex-
ecuting multiple “scroll up” and “scroll down” operations. Before
the beginning of a workload, the browser state is cleaned and the
required setup is done, e.g., Chrome requires at first launch to ac-
cept some conditions, sign-in into an account or not, etc. We iterate
through each browser sequentially, and re-test each browser 5 times.
We repeat the full experiment with both active and inactive device
mirroring.

Browser Performance Figure 3 shows the average battery dis-
charge (standard deviation as errorbars) measured for each browser,
considering both active and inactive device mirroring. The figure
shows that, regardless of device mirroring, the overall result does
not change, i.e., with Brave offering minimal battery consumption
and Firefox consuming the most. This is because device mirroring
offers a constant extra cost (∼20mAh) regardless of the browser
being tested. This result is in line with the constant gap observed
between active and inactive device mirroring in Figure 2.

This additional battery consumption caused by device mirroring is
due to an increase of the CPU load on the device under test. Figure 4
shows the CDF of the CPU utilization for Chrome and Brave with
active and inactive device mirroring, respectively. A similar trend is
observed for the other browsers, which have been omitted to increase
the plot visibility. The figure shows two results. First, Brave’s lower
battery consumption comes from an overall lower CPU pressure, e.g.,

Figure 4: CDF of CPU consumption
(Brave and Chrome).

Figure 5: CDF of CPU consumption at the controller (Rasp-
berry Pi 3B+).

a median CPU utilization of 12% versus 20% in Chrome. Second,
device mirroring causes, for both browsers, a 5% CPU increase. This
is more noticeable at higher CPU values which is when the browser’s
automation is active. This happens because of the increasing load
on the encoder when the screen content changes quickly versus, for
example, the fixed phone’s home screen.

System Performance Overall, higher CPU utilization is the main
extra cost caused by device mirroring (extra 50%, on average). The
impact on memory consumption is minimal (extra 6%, on average).
Overall, memory does not appear to be an issue given less than 20%
utilization of the Raspberry Pi’s 1 GB. The networking demand is
also minimal, with just 32 MB of upload traffic for a ∼7 minutes test.
Note that we set scrcpy’s video encoding (H.264) rate to 1 Mbps,
which produces an upper bound of about 50 MB. The lower value
depends on extra compression provided by noVNC.

Evaluating the responsiveness of device mirroring is challenging.
We call latency the time between when an action is requested, either
via automation or a click in the browser, and when the consequence



HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Varvello et al.

Speedtest Server (kms) D (Mbps) U (Mbps) L (ms)
South Africa

Johannesburg (3.21)
6.26 9.77 222.04

China
Hong Kong (4.86)

7.64 7.77 286.32

Japan
Bunkyo (2.21)

9.68 7.76 239.38

Brazil
Sao Paulo (8.84)

9.75 8.82 235.05

CA, USA
Santa Clara (7.99)

10.63 14.87 215.16

Table 2: ProtonVPN statistics. D=down/U=up/L=RTT.

of this action is displayed back in the browser, after being executed
on the device. This depends on many factors like network latency
(between browser and test device), load on device and/or controller,
and software optimizations. We estimate such latency recording
audio (44,100 Hz) and video (60 fps) while interacting with the
device via the browser. We then manually annotated the video using
ELAN multimedia annotator software [36] and compute the latency
as the time between a mouse click (identified via sound) and the first
frame with a visual change in the app. We repeat this test 40 times
while co-located with the vantage point (1 ms network latency) and
measure an average latency of 1.44 (±0.12) sec.

Next, we dig deeper into CPU utilization at the controller. Figure 4
shows the CDF of the CPU utilization during the Chrome experi-
ments with active and inactive device mirroring — no significant
difference was observed for the other browsers. When device mir-
roring is inactive, the controller is mostly underloaded, i.e., constant
CPU utilization at 25%. This load is caused by the communica-
tion with the Monsoon to pull battery readings at highest frequency.
When device mirroring is enabled, the median load instead increases
to about 75%. Further, in 10% of the measurements the load is quite
high and over 95%.

4.3 Location, Location, Location
BatteryLab’s distributed nature is both a feature and a necessity. It is
a feature since it allows battery measurements under diverse network
conditions which is, to the best of our knowledge, an unchartered
research area. It is a necessity since it is how the platform can scale
without incurring high costs. We here explore the impact of network
location on battery measurements. In the lack of multiple vantage
points, we emulate such network footprint via a VPN.

We acquired a basic subscription with ProtonVPN [31] and set
it up at the controller. We then choose 5 locations from where to
tunnel our tests. Table 2 summarizes the locations chosen, along
with some statistics derived from SpeedTest (upload bandwidth,
download bandwidth, and latency). VPN vantage points are sorted by
download bandwidth, with the South Africa node being the slowest
and the California node being the fastest. Since the speedtest server is
always within 10 km from each VPN node, the latency here reported
is mostly representative of the network path between the vantage
point and the VPN node.

Next, we extend the automation script to also activate a VPN con-
nection at the controller before testing. Figure 6 shows the average
battery discharge (standard deviation as errorbars) per VPN location
and browser — for visibility reasons and to bound the experiment
duration, only Chrome and Brave were tested. Overall, the figure
does not show dramatic differences among the battery measurements

Figure 6: Brave and Chrome energy consumption measured
through VPN tunnels.

as a function of the network location. For example, while the avail-
able bandwidth almost double between South Africa and California,
the average discharge variation stays between standard deviation
bounds. This is encouraging for experiments where BatteryLab’s
distributed nature is a necessity and its noise should be minimized.

Figure 6 also shows an interesting trend when comparing Brave
and Chrome when tested via the Japanese VPN node. In this case,
Brave’s energy consumption is in line with the other nodes, while
Chrome’s is minimized. This is due to a significant (20%) drop in
bandwidth usage by Chrome, due to a systematic reduction in the
overall size of ads shown at this location. This is an interesting result
for experiments where BatteryLab’s distributed nature is a feature.

Anecdotally, we also noticed that Google’s lite pages [16] were on
by default in South Africa and Japan, for Chrome. Google mentions
that this decision is driven by low bandwidth rather than location,
which does not necessarily match our measurements (see Table 2).
While we turned this feature off to ensure comparable tests, we also
noticed that none of the tested pages currently support this feature.

5 CONCLUSION AND FUTURE WORK
In this paper we have proposed BatteryLab, a distributed measure-
ment platform for battery measurements. We have also started build-
ing and experimenting with BatteryLab, to the point that our system
is ready to accept new members. We specifically focused on Android
because of ease of integration and availability of testing tools. How-
ever, we discussed iOS solutions which we soon plan to experiment
with. Similarly, while we focus on mobile devices there is no fun-
damental constraint which would not allow BatteryLab to support
laptops or IoT devices. We designed BatteryLab to enable remote
access and human-controlled tests; we plan to facilitate such tests
via integration with platforms like Mechanical Turk [4] and Figure
Eight [13]. Our vision is an open source and open access platform
that users can join by sharing resources. However, we anticipate
potential access via a credit system for experimenters lacking the
resources for the initial setup.

ACKNOWLEDGMENTS
Katevas and Haddadi were partially supported by the EPSRC Databox
and DADA grants (EP/N028260/1, EP/R03351X/1).



BatteryLab HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

REFERENCES
[1] Ö. Alay, A. Lutu, M. Peón-Quirós, V. Mancuso, T. Hirsch, K. Evensen, A. Hansen,

S. Alfredsson, J. Karlsson, A. Brunstrom, et al. Experience: An open platform
for experimentation with commercial mobile broadband networks. In Proc. ACM
MobiCom, pages 70–78, 2017.

[2] M. Almeida, M. Bilal, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Varvello,
and J. Blackburn. Chimp: Crowdsourcing human inputs for mobile phones. In
Proc. of WWW, pages 45–54, 2018.

[3] Amazon Inc. A reliable and cost-effective way to route end users to Internet
applications. https://aws.amazon.com/route53/.

[4] Amazon Inc. Amazon Mechanical Turk. https://www.mturk.com/.
[5] Amazon Inc. AWS Device Farm.

https://aws.amazon.com/device-farm/.
[6] Apple Inc. How to AirPlay video and mirror your device’s screen. https://support.

apple.com/HT204289.
[7] Apple Inc. XCTest - Apple Developer Documentation.

https://developer.apple.com/documentation/xctest.
[8] BatteryLab. A Distributed Platform for Battery Measurements.

https://batterylab.dev.
[9] BatteryLab. Batterylab tutorial for new members.

https://batterylab.dev/tutorial/blab-tutorial.pdf.
[10] D. H. Bui, Y. Liu, H. Kim, I. Shin, and F. Zhao. Rethinking energy-performance

trade-off in mobile web page loading. In Proc. ACM MobiCom, 2015.
[11] Y. Cao, J. Nejati, M. Wajahat, A. Balasubramanian, and A. Gandhi. Decon-

structing the energy consumption of the mobile page load. Proc. of the ACM on
Measurement and Analysis of Computing Systems, 1(1):6:1–6:25, June 2017.

[12] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and R. Vannithamby. Smartphone
energy drain in the wild: Analysis and implications. In Proc. ACM SIGMETRICS,
2015.

[13] Figure Eight. The Essential Data Annotation Platform.
https://www.figure-eight.com.

[14] A. Geniola. Simple Python library for Meross devices.
https://github.com/albertogeniola/MerossIot.

[15] Genymobile. Display and control your Android device.
https://github.com/Genymobile/scrcpy.

[16] Google. Lite page by Google. https://www.ghacks.net/2019/03/14/
chrome-lite-pages/.

[17] Google Inc. Android Debug Bridge.
https://developer.android.com/studio/command-line/adb.

[18] Google Inc. Android Developers - Automate user interface tests.
https://developer.android.com/training/testing/ui-testing.

[19] Greenspector. Test in the cloud with real mobile devices.
https://greenspector.com/en/.

[20] C. Hwang, S. Pushp, C. Koh, J. Yoon, Y. Liu, S. Choi, and J. Song. Raven:
Perception-aware optimization of power consumption for mobile games. In Proc.
ACM MobiCom, 2017.

[21] Jenkins. The leading open source automation server. https://jenkins.io/.
[22] Let’s Encrypt. A a free, automated, and open Certificate Authority.

https://letsencrypt.org.
[23] Microsoft, Visual Studio. App Center is mission control for apps.

https://appcenter.ms/sign-in.
[24] Mobile Enerlytics. The Leader In Automated App Testing Innovations To Reduce

Battery Drain. http://mobileenerlytics.com/.
[25] MONROE - H2020-ICT-11-2014. Measuring Mobile Broadband Net-

works in Europe. https://www.monroe-project.eu/wp-content/uploads/2017/12/
Deliverable-D2.2-Node-Deployment.pdf.

[26] Monsoon Solutions Inc. High voltage power monitor.
https://www.msoon.com.

[27] Monsoon Solutions Inc. Monsoon Power Monitor Python Library.
https://github.com/msoon/PyMonsoon.

[28] Mvp - github. uhubctl - USB hub per-port power control.
https://github.com/mvp/uhubctl.

[29] noVNC. A VNC client JavaScript library as well as an application built on top of
that library. https://novnc.com.

[30] PlanetLab. An open platform for developing, deploying, and accessing planetary-
scale services. https://www.planet-lab.org/.

[31] ProtonVPN. High-speed Swiss VPN that safeguards your privacy.
https://protonvpn.com/.

[32] Raspberry Pi. Raspberry Pi 3 Model B+. https://www.raspberrypi.org/products/
raspberry-pi-3-model-b-plus/.

[33] A. Schulman, T. Schmid, P. Dutta, and N. Spring. Phone power monitoring with
battor. In Proc. ACM MobiCom, 2011.

[34] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh. Who killed
my battery?: Analyzing mobile browser energy consumption. In Proc. of WWW,
2012.

[35] TigerVNC. A high-performance, platform-neutral implementation of VNC (Vir-
tual Network Computing). https://tigervnc.org.

[36] P. Wittenburg, H. Brugman, A. Russel, A. Klassmann, and H. Sloetjes. Elan: a
professional framework for multimodality research. In Proc. of LREC, volume
2006, page 5th, 2006.

https://aws.amazon.com/route53/
https://www.mturk.com/
https://aws.amazon.com/device-farm/
https://support.apple.com/HT204289
https://support.apple.com/HT204289
https://developer.apple.com/documentation/xctest
https://batterylab.dev
https://batterylab.dev/tutorial/blab-tutorial.pdf
https://www.figure-eight.com
https://github.com/albertogeniola/MerossIot
https://github.com/Genymobile/scrcpy
https://www.ghacks.net/2019/03/14/chrome-lite-pages/
https://www.ghacks.net/2019/03/14/chrome-lite-pages/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/training/testing/ui-testing
https://greenspector.com/en/
https://jenkins.io/
https://letsencrypt.org
https://appcenter.ms/sign-in
http://mobileenerlytics.com/
https://www.monroe-project.eu/wp-content/uploads/2017/12/Deliverable-D2.2-Node-Deployment.pdf
https://www.monroe-project.eu/wp-content/uploads/2017/12/Deliverable-D2.2-Node-Deployment.pdf
https://www.msoon.com
https://github.com/msoon/PyMonsoon
https://github.com/mvp/uhubctl
https://novnc.com
https://www.planet-lab.org/
https://protonvpn.com/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://tigervnc.org

	Abstract
	1 Introduction
	2 Related Work
	3 BatteryLab
	3.1 Access Server
	3.2 Vantage Point
	3.3 Automation
	3.4 How to Join?

	4 Preliminary Evaluation
	4.1 Accuracy
	4.2 Demonstration
	4.3 Location, Location, Location

	5 Conclusion and Future Work
	References

